Mak*_*aki 7 python nlp named-entity-recognition spacy dependency-parsing
使用 Spacy,我根据我定义的语法规则从文本中提取方面-意见对。规则基于 POS 标签和依赖标签,由token.pos_和 获取token.dep_。下面是语法规则之一的示例。如果我通过Japan is cool,它返回的句子[('Japan', 'cool', 0.3182)],其中的值代表cool.
但是我不知道如何让它识别命名实体。例如,如果我通过了Air France is cool,我想得到[('Air France', 'cool', 0.3182)]但我目前得到的是[('France', 'cool', 0.3182)].
我查看了 Spacy 在线文档,我知道如何提取 NE( doc.ents)。但我想知道可能的解决方法是使我的提取器工作。请注意,我不希望强制措施,如连接字符串AirFrance,Air_France等等。
谢谢!
import spacy
nlp = spacy.load("en_core_web_lg-2.2.5")
review_body = "Air France is cool."
doc=nlp(review_body)
rule3_pairs = []
for token in doc:
children = token.children
A = "999999"
M = "999999"
add_neg_pfx = False
for child in children :
if(child.dep_ == "nsubj" and not child.is_stop): # nsubj is nominal subject
A = child.text
if(child.dep_ == "acomp" and not child.is_stop): # acomp is adjectival complement
M = child.text
# example - 'this could have been better' -> (this, not better)
if(child.dep_ == "aux" and child.tag_ == "MD"): # MD is modal auxiliary
neg_prefix = "not"
add_neg_pfx = True
if(child.dep_ == "neg"): # neg is negation
neg_prefix = child.text
add_neg_pfx = True
if (add_neg_pfx and M != "999999"):
M = neg_prefix + " " + M
if(A != "999999" and M != "999999"):
rule3_pairs.append((A, M, sid.polarity_scores(M)['compound']))
Run Code Online (Sandbox Code Playgroud)
结果
rule3_pairs
>>> [('France', 'cool', 0.3182)]
Run Code Online (Sandbox Code Playgroud)
期望输出
rule3_pairs
>>> [('Air France', 'cool', 0.3182)]
Run Code Online (Sandbox Code Playgroud)
在提取器中集成实体非常容易。对于每对孩子,您应该检查“A”孩子是否是某个命名实体的头部,如果是,则使用整个实体作为您的对象。
这里我提供整个代码
!python -m spacy download en_core_web_lg
import nltk
nltk.download('vader_lexicon')
import spacy
nlp = spacy.load("en_core_web_lg")
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
def find_sentiment(doc):
# find roots of all entities in the text
ner_heads = {ent.root.idx: ent for ent in doc.ents}
rule3_pairs = []
for token in doc:
children = token.children
A = "999999"
M = "999999"
add_neg_pfx = False
for child in children:
if(child.dep_ == "nsubj" and not child.is_stop): # nsubj is nominal subject
if child.idx in ner_heads:
A = ner_heads[child.idx].text
else:
A = child.text
if(child.dep_ == "acomp" and not child.is_stop): # acomp is adjectival complement
M = child.text
# example - 'this could have been better' -> (this, not better)
if(child.dep_ == "aux" and child.tag_ == "MD"): # MD is modal auxiliary
neg_prefix = "not"
add_neg_pfx = True
if(child.dep_ == "neg"): # neg is negation
neg_prefix = child.text
add_neg_pfx = True
if (add_neg_pfx and M != "999999"):
M = neg_prefix + " " + M
if(A != "999999" and M != "999999"):
rule3_pairs.append((A, M, sid.polarity_scores(M)['compound']))
return rule3_pairs
print(find_sentiment(nlp("Air France is cool.")))
print(find_sentiment(nlp("I think Gabriel García Márquez is not boring.")))
print(find_sentiment(nlp("They say Central African Republic is really great. ")))
Run Code Online (Sandbox Code Playgroud)
此代码的输出将是您所需要的:
[('Air France', 'cool', 0.3182)]
[('Gabriel García Márquez', 'not boring', 0.2411)]
[('Central African Republic', 'great', 0.6249)]
Run Code Online (Sandbox Code Playgroud)
享受!
| 归档时间: |
|
| 查看次数: |
541 次 |
| 最近记录: |