Joh*_*aul 2 python opencv numpy
我已经能够读取图像,然后使用工作正常的坐标位置读取特定像素 ( pixel = img[801,600])。
我的下一步是遍历每个像素并尝试使用像素数据找到位置(在本例中为 [801,600])。
我通过“img”的迭代无法找到像素。我将不胜感激任何帮助或指导。
import cv2
import numpy as np
img = cv2.imread('one.jpg')
pixel = img[801,600]
print (pixel) # pixel value i am searching for
for i in img:
for x in i:
if x.sort == pixel.sort:
print ("SUCCESS")
Run Code Online (Sandbox Code Playgroud)
内置的enumerate迭代功能将为您提供帮助。它将提供一个迭代索引,在您的情况下,将提供一个像素索引:
import cv2
import numpy as np
img = cv2.imread('one.jpg')
pixel = img[801,600]
print (pixel) # pixel value i am searching for
def search_for():
for iidx, i in enumerate(img):
for xidx, x in enumerate(i):
if (x == pixel).all():
print (f"SUCCESS - [{iidx} {xidx}]")
if __name__ == "__main__":
print("Search using for loops...")
search_for()
Run Code Online (Sandbox Code Playgroud)
话虽如此,for 循环在 python 中很慢,并且代码在适当大的图像上运行需要一段时间。相反,np.array首选使用方法,因为它们已针对此类应用程序进行了优化:
import cv2
import numpy as np
img = cv2.imread('one.jpg')
pixel = img[801,600]
print (pixel) # pixel value i am searching for
def search_array():
# create an image of just the pixel, having the same size of
pixel_tile = np.tile(pixel, (*img.shape[:2], 1))
# absolute difference of the two images
diff = np.sum(np.abs(img - pixel_tile), axis=2)
# print indices
print("\n".join([f"SUCCESS - {idx}" for idx in np.argwhere(diff == 0)]))
if __name__ == "__main__":
print("Search using numpy methods...")
search_array()
Run Code Online (Sandbox Code Playgroud)