chr*_*uck 15 python machine-learning dataset tensorflow pytorch
我正在尝试加载两个数据集并将它们用于训练。
\n\n软件包版本:python 3.7;\npytorch 1.3.1
\n\n可以单独创建 data_loader 并按顺序对其进行训练:
\n\nfrom torch.utils.data import DataLoader, ConcatDataset\n\n\ntrain_loader_modelnet = DataLoader(ModelNet(args.modelnet_root, categories=args.modelnet_categories,split=\'train\', transform=transform_modelnet, device=args.device),batch_size=args.batch_size, shuffle=True)\n\ntrain_loader_mydata = DataLoader(MyDataset(args.customdata_root, categories=args.mydata_categories, split=\'train\', device=args.device),batch_size=args.batch_size, shuffle=True)\n\nfor e in range(args.epochs):\n for idx, batch in enumerate(tqdm(train_loader_modelnet)):\n # training on dataset1\n for idx, batch in enumerate(tqdm(train_loader_custom)):\n # training on dataset2\n\n
Run Code Online (Sandbox Code Playgroud)\n\n注意:MyDataset 是一个已def __len__(self):
def __getitem__(self, index):
实现的自定义数据集类。由于上述配置有效,看来这是实现正常的。
但我理想情况下希望将它们组合成一个数据加载器对象。我按照 pytorch 文档尝试了这一点:
\n\ntrain_modelnet = ModelNet(args.modelnet_root, categories=args.modelnet_categories,\n split=\'train\', transform=transform_modelnet, device=args.device)\ntrain_mydata = CloudDataset(args.customdata_root, categories=args.mydata_categories,\n split=\'train\', device=args.device)\ntrain_loader = torch.utils.data.ConcatDataset(train_modelnet, train_customdata)\n\nfor e in range(args.epochs):\n for idx, batch in enumerate(tqdm(train_loader)):\n # training on combined\n\n
Run Code Online (Sandbox Code Playgroud)\n\n然而,在随机批次中,我得到以下“预期张量作为参数 0 中的元素 X,但得到了元组”类型的错误。任何帮助将非常感激!
\n\n> 40%|\xe2\x96\x88\xe2\x96\x88\xe2\x96\x88\xe2\x96\x88 | 53/131 [01:03<02:00, 1.55s/it]\n> Traceback (mostrecent call last): File\n> "/home/chris/Programs/pycharm-anaconda-2019.3.4/plugins/python/helpers/pydev/pydevd.py",\n> line 1434, in _exec\n> pydev_imports.execfile(file, globals, locals) # execute the script File\n> "/home/chris/Programs/pycharm-anaconda-2019.3.4/plugins/python/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile\n> exec(compile(contents+"\\n", file, \'exec\'), glob, loc) File "/home/chris/Documents/4yp/Data/my_kaolin/Classification/pointcloud_classification_combinedset.py",\n> line 83, in <module>\n> for idx, batch in enumerate(tqdm(train_loader)): File "/home/chris/anaconda3/envs/4YP/lib/python3.7/site-packages/tqdm/std.py",\n> line 1107, in __iter__\n> for obj in iterable: File "/home/chris/anaconda3/envs/4YP/lib/python3.7/site-packages/torch/utils/data/dataloader.py",\n> line 346, in __next__\n> data = self._dataset_fetcher.fetch(index) # may raise StopIteration File\n> "/home/chris/anaconda3/envs/4YP/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py",\n> line 47, in fetch\n> return self.collate_fn(data) File "/home/chris/anaconda3/envs/4YP/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py",\n> line 79, in default_collate\n> return [default_collate(samples) for samples in transposed] File "/home/chris/anaconda3/envs/4YP/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py",\n> line 79, in <listcomp>\n> return [default_collate(samples) for samples in transposed] File "/home/chris/anaconda3/envs/4YP/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py",\n> line 55, in default_collate\n> return torch.stack(batch, 0, out=out) TypeError: expected Tensor as element 3 in argument 0, but got tuple \n
Run Code Online (Sandbox Code Playgroud)\n\n\n
Run Code Online (Sandbox Code Playgroud)\n
jve*_*l07 27
如果我的问题正确,那么您的训练集和开发集(及其相应的加载器)如下:
train_set = CustomDataset(...)
train_loader = DataLoader(dataset=train_set, ...)
dev_set = CustomDataset(...)
dev_loader = DataLoader(dataset=dev_set, ...)
Run Code Online (Sandbox Code Playgroud)
您想将它们连接起来以便使用 train+dev 作为训练数据,对吧?如果是这样,您只需调用:
train_dev_sets = torch.utils.data.ConcatDataset([train_set, dev_set])
train_dev_loader = DataLoader(dataset=train_dev_sets, ...)
Run Code Online (Sandbox Code Playgroud)
这train_dev_loader
是包含来自两组的数据的加载器。
现在,请确保您的数据具有相同的形状和相同的类型,即相同数量的特征,或相同的类别/数字等。
我猜这两个数据集有时会返回不同的类型。当数据是张量时,torch将它们堆叠起来,并且它们最好是相同的形状。如果它们是字符串之类的东西,火炬将从它们中创建一个元组。所以这听起来像是你的一个数据集有时返回的东西不是张量。我会在数据集的输出上放置一些断言,以检查它是否正在执行您想要的操作,或者深入研究pdb
.
归档时间: |
|
查看次数: |
34711 次 |
最近记录: |