Jud*_*e83 2 r machine-learning r-caret mlr xgboost
由于我对 XGBoost 非常陌生,我尝试使用mlr库和模型调整参数,但在使用 setHayperPars() 学习后,使用 train() 抛出错误(特别是当我运行xgmodel行时):colnames(x) 中的错误:参数“x”丢失,没有默认值,我无法识别这个错误意味着什么,下面是代码:
library(mlr)
library(dplyr)
library(caret)
library(xgboost)
set.seed(12345)
n=dim(mydata)[1]
id=sample(1:n, floor(n*0.6))
train=mydata[id,]
test=mydata[-id,]
traintask = makeClassifTask (data = train,target = "label")
testtask = makeClassifTask (data = test,target = "label")
#create learner
lrn = makeLearner("classif.xgboost",
predict.type = "response")
lrn$par.vals = list( objective="multi:softprob",
eval_metric="merror")
#set parameter space
params = makeParamSet( makeIntegerParam("max_depth",lower = 3L,upper = 10L),
makeIntegerParam("nrounds",lower = 20L,upper = 100L),
makeNumericParam("eta",lower = 0.1, upper = 0.3),
makeNumericParam("min_child_weight",lower = 1L,upper = 10L),
makeNumericParam("subsample",lower = 0.5,upper = 1),
makeNumericParam("colsample_bytree",lower = 0.5,upper = 1))
#set resampling strategy
configureMlr(show.learner.output = FALSE, show.info = FALSE)
rdesc = makeResampleDesc("CV",stratify = T,iters=5L)
# set the search optimization strategy
ctrl = makeTuneControlRandom(maxit = 10L)
# parameter tuning
set.seed(12345)
mytune = tuneParams(learner = lrn, task = traintask,
resampling = rdesc, measures = acc,
par.set = params, control = ctrl,
show.info = FALSE)
# build model using the tuned paramters
#set hyperparameters
lrn_tune = setHyperPars(lrn,par.vals = mytune$x)
#train model
xgmodel = train(learner = lrn_tune,task = traintask)
Run Code Online (Sandbox Code Playgroud)
谁能告诉我怎么了!?
加载可能涉及同名方法的多个包时必须非常caret小心 - here和mlr,它们都包含一个train方法。此外,语句的顺序library很重要:在这里,当caret在 后加载时mlr,它会屏蔽其中具有相同名称的函数(可能还有之前加载的所有其他包),例如train。
在您的情况下,您显然想使用trainfrom mlr(而不是 from caret)的方法,您应该在代码中显式声明:
xgmodel = mlr::train(learner = lrn_tune,task = traintask)
Run Code Online (Sandbox Code Playgroud)