Kea*_*anu 7 python opencv numpy crop python-imaging-library
所以我一直在尝试编写一个 Python 脚本,该脚本将图像作为输入,然后切出一个具有特定背景颜色的矩形。但是,导致我的编码技能出现问题的是,矩形不是每个图像中的固定位置(位置将是随机的)。
我不太明白如何管理 numpy 函数。我也读过一些关于 OpenCV 的东西,但我对它完全陌生。到目前为止,我只是通过“.crop”功能裁剪了图像,但随后我将不得不使用固定值。
这就是输入图像的外观,现在我想检测黄色矩形的位置,然后将图像裁剪到其大小。
感谢帮助,提前致谢。
编辑:@MarkSetchell 的方式效果很好,但发现不同的测试图片存在问题。另一张图片的问题是图片顶部和底部有2个颜色相同的小像素,导致错误或裁剪不好。
更新答案
我已经更新了我的答案,以处理与黄色框颜色相同的噪声异常像素斑点。这是通过首先在图像上运行 3x3 中值滤波器来去除斑点来工作的:
#!/usr/bin/env python3
import numpy as np
from PIL import Image, ImageFilter
# Open image and make into Numpy array
im = Image.open('image.png').convert('RGB')
na = np.array(im)
orig = na.copy() # Save original
# Median filter to remove outliers
im = im.filter(ImageFilter.MedianFilter(3))
# Find X,Y coordinates of all yellow pixels
yellowY, yellowX = np.where(np.all(na==[247,213,83],axis=2))
top, bottom = yellowY[0], yellowY[-1]
left, right = yellowX[0], yellowX[-1]
print(top,bottom,left,right)
# Extract Region of Interest from unblurred original
ROI = orig[top:bottom, left:right]
Image.fromarray(ROI).save('result.png')
Run Code Online (Sandbox Code Playgroud)
原答案
好的,你的黄色是rgb(247,213,83)
,所以我们要找到所有黄色像素的 X,Y 坐标:
#!/usr/bin/env python3
from PIL import Image
import numpy as np
# Open image and make into Numpy array
im = Image.open('image.png').convert('RGB')
na = np.array(im)
# Find X,Y coordinates of all yellow pixels
yellowY, yellowX = np.where(np.all(na==[247,213,83],axis=2))
# Find first and last row containing yellow pixels
top, bottom = yellowY[0], yellowY[-1]
# Find first and last column containing yellow pixels
left, right = yellowX[0], yellowX[-1]
# Extract Region of Interest
ROI=na[top:bottom, left:right]
Image.fromarray(ROI).save('result.png')
Run Code Online (Sandbox Code Playgroud)
您可以在终端中使用ImageMagick执行完全相同的操作:
# Get trim box of yellow pixels
trim=$(magick image.png -fill black +opaque "rgb(247,213,83)" -format %@ info:)
# Check how it looks
echo $trim
251x109+101+220
# Crop image to trim box and save as "ROI.png"
magick image.png -crop "$trim" ROI.png
Run Code Online (Sandbox Code Playgroud)
如果仍在使用ImageMagick v6 而不是 v7,请替换magick
为convert
.
我看到的是侧面和顶部的深灰色和浅灰色区域、一个白色区域以及一个黄色矩形,白色区域内有灰色三角形。
我建议的第一阶段是将图像从 RGB 颜色空间转换为HSV颜色空间。
HSV 空间中的S颜色通道,是“颜色饱和度通道”。
S 通道中所有无色(灰/黑/白)均为零,黄色像素高于零。
接下来的阶段:
这是代码:
import numpy as np
import cv2
# Read input image
img = cv2.imread('img.png')
# Convert from BGR to HSV color space
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Get the saturation plane - all black/white/gray pixels are zero, and colored pixels are above zero.
s = hsv[:, :, 1]
# Apply threshold on s - use automatic threshold algorithm (use THRESH_OTSU).
ret, thresh = cv2.threshold(s, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Find contours in thresh (find only the outer contour - only the rectangle).
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] # [-2] indexing takes return value before last (due to OpenCV compatibility issues).
# Mark rectangle with green line
cv2.drawContours(img, contours, -1, (0, 255, 0), 2)
# Assume there is only one contour, get the bounding rectangle of the contour.
x, y, w, h = cv2.boundingRect(contours[0])
# Invert polarity of the pixels inside the rectangle (on thresh image).
thresh[y:y+h, x:x+w] = 255 - thresh[y:y+h, x:x+w]
# Find contours in thresh (find the triangles).
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] # [-2] indexing takes return value before last (due to OpenCV compatibility issues).
# Iterate triangle contours
for c in contours:
if cv2.contourArea(c) > 4: # Ignore very small contours
# Mark triangle with blue line
cv2.drawContours(img, [c], -1, (255, 0, 0), 2)
# Show result (for testing).
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
如果背景上有一些彩色点,您可以裁剪最大的彩色轮廓:
import cv2
import imutils # https://pypi.org/project/imutils/
# Read input image
img = cv2.imread('img2.png')
# Convert from BGR to HSV color space
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Get the saturation plane - all black/white/gray pixels are zero, and colored pixels are above zero.
s = hsv[:, :, 1]
cv2.imwrite('s.png', s)
# Apply threshold on s - use automatic threshold algorithm (use THRESH_OTSU).
ret, thresh = cv2.threshold(s, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Find contours
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnts = imutils.grab_contours(cnts)
# Find the contour with the maximum area.
c = max(cnts, key=cv2.contourArea)
# Get bounding rectangle
x, y, w, h = cv2.boundingRect(c)
# Crop the bounding rectangle out of img
out = img[y:y+h, x:x+w, :].copy()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
7243 次 |
最近记录: |