Asa*_*din 8 monads haskell filter category-theory alternative-functor
集合的范畴既是笛卡尔幺半群又是余笛卡尔幺半群。下面列出了见证这两个幺半群结构的典型同构的类型:
type x + y = Either x y
type x × y = (x, y)
data Iso a b = Iso { fwd :: a -> b, bwd :: b -> a }
eassoc :: Iso ((x + y) + z) (x + (y + z))
elunit :: Iso (Void + x) x
erunit :: Iso (x + Void) x
tassoc :: Iso ((x × y) × z) (x × (y × z))
tlunit :: Iso (() × x) x
trunit :: Iso (x × ()) x
Run Code Online (Sandbox Code Playgroud)
出于这个问题的目的,我定义Alternative
为从Either
张量下的 Hask 到张量下的 Hask 的松散幺半群函子(仅此而已(,)
):
class Functor f => Alt f
where
union :: f a × f b -> f (a + b)
class Alt f => Alternative f
where
nil :: () -> f Void
Run Code Online (Sandbox Code Playgroud)
这些定律只是针对松散幺半群函子的定律。
关联性:
fwd tassoc >>> bimap id union >>> union
=
bimap union id >>> union >>> fmap (fwd eassoc)
Run Code Online (Sandbox Code Playgroud)
左单元:
fwd tlunit
=
bimap nil id >>> union >>> fmap (fwd elunit)
Run Code Online (Sandbox Code Playgroud)
正确的单位:
fwd trunit
=
bimap id nil >>> union >>> fmap (fwd erunit)
Run Code Online (Sandbox Code Playgroud)
下面是如何Alternative
根据松散幺半群函子编码的相干映射恢复类型类更熟悉的操作:
(<|>) :: Alt f => f a -> f a -> f a
x <|> y = either id id <$> union (Left <$> x, Right <$> y)
empty :: Alternative f => f a
empty = absurd <$> nil ()
Run Code Online (Sandbox Code Playgroud)
我将Filterable
函子定义为从张量下的 Hask 到张量下的Hask 的 oplax 幺半群函子:Either
(,)
class Functor f => Filter f
where
partition :: f (a + b) -> f a × f b
class Filter f => Filterable f
where
trivial :: f Void -> ()
trivial = const ()
Run Code Online (Sandbox Code Playgroud)
对于它的定律,它只是向后松弛幺半群函子定律:
关联性:
bwd tassoc <<< bimap id partition <<< partition
=
bimap partition id <<< partition <<< fmap (bwd eassoc)
Run Code Online (Sandbox Code Playgroud)
左单元:
bwd tlunit
=
bimap trivial id <<< partition <<< fmap (bwd elunit)
Run Code Online (Sandbox Code Playgroud)
正确的单位:
bwd trunit
=
bimap id trivial <<< partition <<< fmap (bwd erunit)
Run Code Online (Sandbox Code Playgroud)
像定义标准过滤-Y功能mapMaybe
和filter
在方面oplax monoidal函子了编码作为练习留给感兴趣的读者:
mapMaybe :: Filterable f => (a -> Maybe b) -> f a -> f b
mapMaybe = _
filter :: Filterable f => (a -> Bool) -> f a -> f a
filter = _
Run Code Online (Sandbox Code Playgroud)
问题是这样的:是每个Alternative
Monad
也Filterable
?
我们可以用我们的方式输入俄罗斯方块来实现:
instance (Alternative f, Monad f) => Filter f
where
partition fab = (fab >>= either return (const empty), fab >>= either (const empty) return)
Run Code Online (Sandbox Code Playgroud)
但是这种实现总是合法的吗?有时是否合法(对于“有时”的某些正式定义)?证明、反例和/或非正式论证都非常有用。谢谢。
这是一个广泛支持你美好想法的论点。
我在这里的计划是用 来重申这个问题mapMaybe
,希望这样做能让我们回到更熟悉的地方。为此,我将使用一些Either
杂耍实用函数:
maybeToRight :: a -> Maybe b -> Either a b
rightToMaybe :: Either a b -> Maybe b
leftToMaybe :: Either a b -> Maybe a
flipEither :: Either a b -> Either b a
Run Code Online (Sandbox Code Playgroud)
(我从relude中获取了前三个名称,从error中获取了第四个名称。顺便说一下,errors在 中分别提供了maybeToRight
和rightToMaybe
asnote
和。)hush
Control.Error.Util
正如您所指出的,mapMaybe
可以用以下方式定义partition
:
mapMaybe :: Filterable f => (a -> Maybe b) -> f a -> f b
mapMaybe f = snd . partition . fmap (maybeToRight () . f)
Run Code Online (Sandbox Code Playgroud)
至关重要的是,我们也可以反过来:
partition :: Filterable f => f (Either a b) -> (f a, f b)
partition = mapMaybe leftToMaybe &&& mapMaybe rightToMaybe
Run Code Online (Sandbox Code Playgroud)
这表明根据 重新制定法律是有意义的mapMaybe
。有了身份法,这样做给了我们一个很好的借口来完全忘记trivial
:
-- Left and right unit
mapMaybe rightToMaybe . fmap (bwd elunit) = id -- [I]
mapMaybe leftToMaybe . fmap (bwd erunit) = id -- [II]
Run Code Online (Sandbox Code Playgroud)
至于结合性,我们可以使用rightToMaybe
和leftToMaybe
将定律分解为三个方程,每个方程对应我们从连续分区中得到的每个分量:
-- Associativity
mapMaybe rightToMaybe . fmap (bwd eassoc)
= mapMaybe rightToMaybe . mapMaybe rightToMaybe -- [III]
mapMaybe rightToMaybe . mapMaybe leftToMaybe . fmap (bwd eassoc)
= mapMaybe leftToMaybe . mapMaybe rightToMaybe -- [IV]
mapMaybe leftToMaybe . fmap (bwd eassoc)
= mapMaybe leftToMaybe . mapMaybe leftToMaybe -- [V]
Run Code Online (Sandbox Code Playgroud)
参数化意味着我们在这里处理的值mapMaybe
是不可知的。Either
既然如此,我们可以使用我们的小Either
同构库来打乱事物并证明 [I] 等价于 [II],而 [III] 等价于 [V]。我们现在只剩下三个方程:
mapMaybe rightToMaybe . fmap (bwd elunit) = id -- [I]
mapMaybe rightToMaybe . fmap (bwd eassoc)
= mapMaybe rightToMaybe . mapMaybe rightToMaybe -- [III]
mapMaybe rightToMaybe . mapMaybe leftToMaybe . fmap (bwd eassoc)
= mapMaybe leftToMaybe . mapMaybe rightToMaybe -- [IV]
Run Code Online (Sandbox Code Playgroud)
参数化允许我们吞掉fmap
[I] 中的内容:
mapMaybe (rightToMaybe . bwd elunit) = id
Run Code Online (Sandbox Code Playgroud)
然而,这根本就是……
mapMaybe Just = id
Run Code Online (Sandbox Code Playgroud)
...这相当于witherable的守恒定律/恒等律Filterable
:
mapMaybe (Just . f) = fmap f
Run Code Online (Sandbox Code Playgroud)
这Filterable
也有一个组合律:
-- The (<=<) is from the Maybe monad.
mapMaybe g . mapMaybe f = mapMaybe (g <=< f)
Run Code Online (Sandbox Code Playgroud)
我们是否也可以从我们的法律中推导出这一点?让我们从[III]开始,再次让参数化发挥作用。这个比较棘手,所以我将其完整地写下来:
mapMaybe rightToMaybe . fmap (bwd eassoc)
= mapMaybe rightToMaybe . mapMaybe rightToMaybe -- [III]
-- f :: a -> Maybe b; g :: b -> Maybe c
-- Precomposing fmap (right (maybeToRight () . g) . maybeToRight () . f)
-- on both sides:
mapMaybe rightToMaybe . fmap (bwd eassoc)
. fmap (right (maybeToRight () . g) . maybeToRight () . f)
= mapMaybe rightToMaybe . mapMaybe rightToMaybe
. fmap (right (maybeToRight () . g) . maybeToRight () . f)
mapMaybe rightToMaybe . mapMaybe rightToMaybe
. fmap (right (maybeToRight () . g) . maybeToRight () . f) -- RHS
mapMaybe rightToMaybe . fmap (maybeToRight () . g)
. mapMaybe rightToMaybe . fmap (maybeToRight () . f)
mapMaybe (rightToMaybe . maybeToRight () . g)
. mapMaybe (rightToMaybe . maybeToRight () . f)
mapMaybe g . mapMaybe f
mapMaybe rightToMaybe . fmap (bwd eassoc)
. fmap (right (maybeToRight () . g) . maybeToRight () . f) -- LHS
mapMaybe (rightToMaybe . bwd eassoc
. right (maybeToRight () . g) . maybeToRight () . f)
mapMaybe (rightToMaybe . bwd eassoc
. right (maybeToRight ()) . maybeToRight () . fmap @Maybe g . f)
-- join @Maybe
-- = rightToMaybe . bwd eassoc . right (maybeToRight ()) . maybeToRight ()
mapMaybe (join @Maybe . fmap @Maybe g . f)
mapMaybe (g <=< f) -- mapMaybe (g <=< f) = mapMaybe g . mapMaybe f
Run Code Online (Sandbox Code Playgroud)
在另一个方向:
mapMaybe (g <=< f) = mapMaybe g . mapMaybe f
-- f = rightToMaybe; g = rightToMaybe
mapMaybe (rightToMaybe <=< rightToMaybe)
= mapMaybe rightToMaybe . mapMaybe rightToMaybe
mapMaybe (rightToMaybe <=< rightToMaybe) -- LHS
mapMaybe (join @Maybe . fmap @Maybe rightToMaybe . rightToMaybe)
-- join @Maybe
-- = rightToMaybe . bwd eassoc . right (maybeToRight ()) . maybeToRight ()
mapMaybe (rightToMaybe . bwd eassoc
. right (maybeToRight ()) . maybeToRight ()
. fmap @Maybe rightToMaybe . rightToMaybe)
mapMaybe (rightToMaybe . bwd eassoc
. right (maybeToRight () . rightToMaybe)
. maybeToRight () . rightToMaybe)
mapMaybe (rightToMaybe . bwd eassoc) -- See note below.
mapMaybe rightToMaybe . fmap (bwd eassoc)
-- mapMaybe rightToMaybe . fmap (bwd eassoc)
-- = mapMaybe rightToMaybe . mapMaybe rightToMaybe
Run Code Online (Sandbox Code Playgroud)
(注意:虽然maybeToRight () . rightToMaybe :: Either a b -> Either () b
is not id
,但在上面的推导中,左值无论如何都会被丢弃,因此将其删除就好像它是一样id
。)
因此[III] 等价于witherable的合成法则Filterable
。
此时,我们可以用组合律来处理[IV]:
mapMaybe rightToMaybe . mapMaybe leftToMaybe . fmap (bwd eassoc)
= mapMaybe leftToMaybe . mapMaybe rightToMaybe -- [IV]
mapMaybe (rightToMaybe <=< leftToMaybe) . fmap (bwd eassoc)
= mapMaybe (letfToMaybe <=< rightToMaybe)
mapMaybe (rightToMaybe <=< leftToMaybe . bwd eassoc)
= mapMaybe (letfToMaybe <=< rightToMaybe)
-- Sufficient condition:
rightToMaybe <=< leftToMaybe . bwd eassoc = letfToMaybe <=< rightToMaybe
-- The condition holds, as can be directly verified by substiuting the definitions.
Run Code Online (Sandbox Code Playgroud)
这足以表明您的课程达到了一个完善的公式Filterable
,这是一个非常好的结果。以下是法律的回顾:
mapMaybe Just = id -- Identity
mapMaybe g . mapMaybe f = mapMaybe (g <=< f) -- Composition
Run Code Online (Sandbox Code Playgroud)
正如witherable文档所指出的,这些是从Kleisli Maybe到Hask的函子的函子法则。
现在我们可以解决您的实际问题,即关于替代单子的问题。您建议的实施partition
是:
partitionAM :: (Alternative f, Monad f) => f (Either a b) -> (f a, f b)
partitionAM
= (either return (const empty) =<<) &&& (either (const empty) return =<<)
Run Code Online (Sandbox Code Playgroud)
根据我的更广泛的计划,我将转向mapMaybe
演示:
mapMaybe f
snd . partition . fmap (maybeToRight () . f)
snd . (either return (const empty) =<<) &&& (either (const empty) return =<<)
. fmap (maybeToRight () . f)
(either (const empty) return =<<) . fmap (maybeToRight () . f)
(either (const empty) return . maybeToRight . f =<<)
(maybe empty return . f =<<)
Run Code Online (Sandbox Code Playgroud)
所以我们可以定义:
mapMaybeAM :: (Alternative f, Monad f) => (a -> Maybe b) -> f a -> f b
mapMaybeAM f u = maybe empty return . f =<< u
Run Code Online (Sandbox Code Playgroud)
或者,用无点拼写:
mapMaybeAM = (=<<) . (maybe empty return .)
Run Code Online (Sandbox Code Playgroud)
在上面的几段中,我注意到Filterable
定律说这是函子从Kleisli Maybe到HaskmapMaybe
的态射映射。由于函子的复合是一个函子,并且是函子从Kleisli f到Hask的态射映射,因此函子从Kleisli Maybe到Kleisli f的态射映射就足够合法了。相关函子定律是:(=<<)
(maybe empty return .)
mapMaybeAM
maybe empty return . Just = return -- Identity
maybe empty return . g <=< maybe empty return . f
= maybe empty return . (g <=< f) -- Composition
Run Code Online (Sandbox Code Playgroud)
该恒等定律成立,所以让我们关注组合定律:
maybe empty return . g <=< maybe empty return . f
= maybe empty return . (g <=< f)
maybe empty return . g =<< maybe empty return (f a)
= maybe empty return (g =<< f a)
-- Case 1: f a = Nothing
maybe empty return . g =<< maybe empty return Nothing
= maybe empty return (g =<< Nothing)
maybe empty return . g =<< empty = maybe empty return Nothing
maybe empty return . g =<< empty = empty -- To be continued.
-- Case 2: f a = Just b
maybe empty return . g =<< maybe empty return (Just b)
= maybe empty return (g =<< Just b)
maybe empty return . g =<< return b = maybe empty return (g b)
maybe empty return (g b) = maybe empty return (g b) -- OK.
Run Code Online (Sandbox Code Playgroud)
因此,当且仅当对于任何mapMaybeAM
都是合法的。现在,如果定义为,正如您在此处所做的那样,我们可以证明对于任何:maybe empty return . g =<< empty = empty
g
empty
absurd <$> nil ()
f =<< empty = empty
f
f =<< empty = empty
f =<< empty -- LHS
f =<< absurd <$> nil ()
f . absurd =<< nil ()
-- By parametricity, f . absurd = absurd, for any f.
absurd =<< nil ()
return . absurd =<< nil ()
absurd <$> nil ()
empty -- LHS = RHS
Run Code Online (Sandbox Code Playgroud)
直观上, ifempty
确实为空(考虑到我们在这里使用的定义,它一定是空的),不会有 的值可f
应用于,因此f =<< empty
除了 之外不会产生任何结果empty
。
这里的另一种方法是研究Alternative
和Monad
类的交互。碰巧,有一个替代 monad 的类:MonadPlus
。因此,重新设计后的样式mapMaybe
可能如下所示:
-- Lawful iff, for any f, mzero >>= maybe empty mzero . f = mzero
mmapMaybe :: MonadPlus m => (a -> Maybe b) -> m a -> m b
mmapMaybe f m = m >>= maybe mzero return . f
Run Code Online (Sandbox Code Playgroud)
虽然对于哪一套法律最适合有不同的意见MonadPlus
,但似乎没有人反对的法律之一是......
mzero >>= f = mzero -- Left zero
Run Code Online (Sandbox Code Playgroud)
empty
...这正是我们上面几段讨论的属性。的合法性mmapMaybe
立即遵循左零定律。
(顺便说一下,Control.Monad
提供了mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
,它与filter
我们可以使用定义的匹配mmapMaybe
。)
总之:
但这种实施总是合法的吗?有时合法吗(对于“有时”的某些正式定义)?
是的,实施是合法的。这个结论取决于empty
确实是空的,因为它应该是空的,或者取决于遵循左零定律的相关替代单子MonadPlus
,这可以归结为几乎相同的事情。
值得强调的Filterable
是 不包含在 中MonadPlus
,我们可以用以下反例来说明:
ZipList
:可过滤,但不是单子。该Filterable
实例与列表的实例相同,尽管列表Alternative
不同。
Map
:可过滤,但既不是单子也不是应用程序。事实上,Map
甚至无法应用,因为没有合理的实现pure
。然而,它确实有自己的empty
。
MaybeT f
:虽然它Monad
和Alternative
实例需要f
是一个单子,并且一个独立的empty
定义至少需要Applicative
,Filterable
但实例只需要(如果你在其中Functor f
插入一个层,任何东西都变得可过滤)。Maybe
empty
在这一点上,人们可能仍然想知道在其中到底nil
扮演了多大的角色Filterable
。它不是一个类方法,但大多数实例似乎都有一个合理的版本。
我们可以确定的一件事是,如果可过滤类型有任何居民,那么至少其中一个将是一个空结构,因为我们总是可以取出任何居民并过滤掉所有内容:
chop :: Filterable f => f a -> f Void
chop = mapMaybe (const Nothing)
Run Code Online (Sandbox Code Playgroud)
但的存在chop
并不意味着会有一个空 nil
值,或者chop
总是给出相同的结果。例如,考虑MaybeT IO
,其Filterable
实例可能被认为是审查IO
计算结果的一种方式。该实例是完全合法的,尽管chop
可以产生MaybeT IO Void
带有任意IO
效果的不同值。
最后一点,您提到了使用强幺半群函子的可能性,以便Alternative
和通过制作/和/同构Filterable
来链接。具有和作为互逆是可以想象的,但相当有限,因为它丢弃了有关大部分实例的元素排列的一些信息。至于另一个同构,虽然微不足道,但很有趣,因为它意味着只有一个值,适用于相当大的实例份额。碰巧这种情况有一个版本。如果我们要求的话,对于任何...union
partition
nil
trivial
union
partition
union . partition
trivial . nil
nil . trivial
f Void
Filterable
MonadPlus
u
absurd <$> chop u = mzero
Run Code Online (Sandbox Code Playgroud)
...然后代入mmapMaybe
第二部分,我们得到:
absurd <$> chop u = mzero
absurd <$> mmapMaybe (const Nothing) u = mzero
mmapMaybe (fmap absurd . const Nothing) u = mzero
mmapMaybe (const Nothing) u = mzero
u >>= maybe mzero return . const Nothing = mzero
u >>= const mzero = mzero
u >> mzero = mzero
Run Code Online (Sandbox Code Playgroud)
该性质被称为 的右零定律MonadPlus
,尽管有充分的理由质疑其作为该特定类别定律的地位。