use*_*118 207 sql oracle count
如何选择count(*),从两个不同的表(叫他们tab1和tab2),其结果为:
Count_1 Count_2
123 456
Run Code Online (Sandbox Code Playgroud)
我试过这个:
select count(*) Count_1 from schema.tab1 union all select count(*) Count_2 from schema.tab2
Run Code Online (Sandbox Code Playgroud)
但我只有:
Count_1
123
456
Run Code Online (Sandbox Code Playgroud)
Qua*_*noi 304
SELECT (
SELECT COUNT(*)
FROM tab1
) AS count1,
(
SELECT COUNT(*)
FROM tab2
) AS count2
FROM dual
Run Code Online (Sandbox Code Playgroud)
din*_*erm 77
作为附加信息,要在SQL Server中完成相同的操作,您只需要删除查询的"FROM dual"部分.
Mik*_*use 33
仅仅因为它略有不同:
SELECT 'table_1' AS table_name, COUNT(*) FROM table_1
UNION
SELECT 'table_2' AS table_name, COUNT(*) FROM table_2
UNION
SELECT 'table_3' AS table_name, COUNT(*) FROM table_3
Run Code Online (Sandbox Code Playgroud)
它给出了转换的答案(每个表一行而不是一列),否则我认为它没有太大的不同.我认为在性能方面他们应该是等同的.
Nic*_*ise 25
我的经验是SQL Server,但你能做到:
select (select count(*) from table1) as count1,
(select count(*) from table2) as count2
Run Code Online (Sandbox Code Playgroud)
在SQL Server中,我得到你想要的结果.
Vik*_*mar 10
select
t1.Count_1,t2.Count_2
from
(SELECT count(1) as Count_1 FROM tab1) as t1,
(SELECT count(1) as Count_2 FROM tab2) as t2
Run Code Online (Sandbox Code Playgroud)
其他略有不同的方法:
with t1_count as (select count(*) c1 from t1),
t2_count as (select count(*) c2 from t2)
select c1,
c2
from t1_count,
t2_count
/
select c1,
c2
from (select count(*) c1 from t1) t1_count,
(select count(*) c2 from t2) t2_count
/
Run Code Online (Sandbox Code Playgroud)
一个快速的尝试提出了:
Select (select count(*) from Table1) as Count1, (select count(*) from Table2) as Count2
Run Code Online (Sandbox Code Playgroud)
注意:我在 SQL Server 中对此进行了测试,因此From Dual没有必要(因此存在差异)。
因为我看不出任何其他答案.
如果您不喜欢子查询并且每个表中都有主键,则可以执行以下操作:
select count(distinct tab1.id) as count_t1,
count(distinct tab2.id) as count_t2
from tab1, tab2
Run Code Online (Sandbox Code Playgroud)
但是表现明智我相信Quassnoi的解决方案更好,而且我会使用它.
select (select count(*) from tab1) count_1, (select count(*) from tab2) count_2 from dual;
Run Code Online (Sandbox Code Playgroud)
小智 6
这是来自我的分享
选项1 - 从不同表中的相同域计数
select distinct(select count(*) from domain1.table1) "count1", (select count(*) from domain1.table2) "count2"
from domain1.table1, domain1.table2;
Run Code Online (Sandbox Code Playgroud)
选项2 - 从同一个表的不同域计数
select distinct(select count(*) from domain1.table1) "count1", (select count(*) from domain2.table1) "count2"
from domain1.table1, domain2.table1;
Run Code Online (Sandbox Code Playgroud)
选项3 - 从同一个表的不同域计数"union all"以具有计数行
select 'domain 1'"domain", count(*)
from domain1.table1
union all
select 'domain 2', count(*)
from domain2.table1;
Run Code Online (Sandbox Code Playgroud)
享受SQL,我总是这样做:)
小智 5
如果表(或至少一个键列)是相同类型的,只需先进行联合然后计数。
select count(*)
from (select tab1key as key from schema.tab1
union all
select tab2key as key from schema.tab2
)
Run Code Online (Sandbox Code Playgroud)
或者接受你的陈述并在它周围加上另一个 sum() 。
select sum(amount) from
(
select count(*) amount from schema.tab1 union all select count(*) amount from schema.tab2
)
Run Code Online (Sandbox Code Playgroud)
出于完整性考虑,该查询将创建一个查询,以向您提供给定所有者的所有表的计数。
select
DECODE(rownum, 1, '', ' UNION ALL ') ||
'SELECT ''' || table_name || ''' AS TABLE_NAME, COUNT(*) ' ||
' FROM ' || table_name as query_string
from all_tables
where owner = :owner;
Run Code Online (Sandbox Code Playgroud)
输出是这样的
SELECT 'TAB1' AS TABLE_NAME, COUNT(*) FROM TAB1
UNION ALL SELECT 'TAB2' AS TABLE_NAME, COUNT(*) FROM TAB2
UNION ALL SELECT 'TAB3' AS TABLE_NAME, COUNT(*) FROM TAB3
UNION ALL SELECT 'TAB4' AS TABLE_NAME, COUNT(*) FROM TAB4
Run Code Online (Sandbox Code Playgroud)
然后可以运行以获取计数。有时只是一个方便的脚本。
小智 5
--============= FIRST WAY (Shows as Multiple Row) ===============
SELECT 'tblProducts' [TableName], COUNT(P.Id) [RowCount] FROM tblProducts P
UNION ALL
SELECT 'tblProductSales' [TableName], COUNT(S.Id) [RowCount] FROM tblProductSales S
--============== SECOND WAY (Shows in a Single Row) =============
SELECT
(SELECT COUNT(Id) FROM tblProducts) AS ProductCount,
(SELECT COUNT(Id) FROM tblProductSales) AS SalesCount
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
356437 次 |
| 最近记录: |