ski*_*bee 5 python r machine-learning mlflow
在mlflow ui远程服务器上运行后,我无法mlflow ui再次重新打开。
一种解决方法是使用pkill -u MyUserName.
否则我会收到以下错误:
[INFO] Starting gunicorn 20.0.4
[ERROR] Connection in use: ('127.0.0.1', 5000)
[ERROR] Retrying in 1 second.
...
Running the mlflow server failed. Please see ther logs above for details.
Run Code Online (Sandbox Code Playgroud)
我理解错误,但我不明白:
1. 关闭的正确方法是什么mlflow ui
2. 如何识别mlflow ui进程以便仅终止该进程而不使用pkill
目前我关闭浏览器或使用 ctrl+C
如果您无法连接到 mlflow,因为它已经在运行,您可以运行以下命令来终止 UI 以生成另一个 UI:
\nlsof -i :5000\nRun Code Online (Sandbox Code Playgroud)\n另外,-port如果您需要启动多个 UI,您可以使用 MLFlow 来分配一个端口号,以防止混淆;例如,一个用于跟踪,一个用于服务等。默认情况下,服务器在端口 5000 上运行。如果该端口已在使用中,请使用该\xe2\x80\x93port选项指定不同的端口:
mlflow models serve -m runs:/<RUN_ID>/model --port 1234\nRun Code Online (Sandbox Code Playgroud)\n2022 年 6 月更新: \n您可以在此处向此 cmd 添加--port标志以正确设置 MLFlow:如何开始使用 MLflow SQL 存储而不是文件系统存储?
小智 5
我收到mlflow ui命令错误。
错误是
[2022-04-19 10:48:02 -0400] [89933] [INFO] Starting gunicorn 20.1.0
[2022-04-19 10:48:02 -0400] [89933] [ERROR] Connection in use: ('127.0.0.1', 5000)
[2022-04-19 10:48:02 -0400] [89933] [ERROR] Retrying in 1 second.
[2022-04-19 10:48:03 -0400] [89933] [ERROR] Connection in use: ('127.0.0.1', 5000)
[2022-04-19 10:48:03 -0400] [89933] [ERROR] Retrying in 1 second.
[2022-04-19 10:48:04 -0400] [89933] [ERROR] Connection in use: ('127.0.0.1', 5000)
[2022-04-19 10:48:04 -0400] [89933] [ERROR] Retrying in 1 second.
[2022-04-19 10:48:05 -0400] [89933] [ERROR] Connection in use: ('127.0.0.1', 5000)
[2022-04-19 10:48:05 -0400] [89933] [ERROR] Retrying in 1 second.
[2022-04-19 10:48:06 -0400] [89933] [ERROR] Connection in use: ('127.0.0.1', 5000)
[2022-04-19 10:48:06 -0400] [89933] [ERROR] Retrying in 1 second.
[2022-04-19 10:48:07 -0400] [89933] [ERROR] Can't connect to ('127.0.0.1', 5000)
Run Code Online (Sandbox Code Playgroud)
对我有用的解决方案:
步骤一:获取进程id
ps -A | grep gunicorn
20734 ?? 0:39.17 /usr/local/Cellar/python@3.9/3.9.10/Frameworks/Python.framework/Versions/3.9/Resources/Python.app/Contents/MacOS/Python /Users/XXX/env/bin/gunicorn - b 127.0.0.1:5000 -w 1 mlflow.server:app
步骤 2:从最后的输出中获取PID ,并终止具有正在使用该端口的 PID 的进程
kill 20734
默认情况下,mlflow UI 绑定到端口 5000,因此后续调用将导致端口繁忙错误。
您可以启动多个 MLflow ui 并提供不同的端口号:
Usage: mlflow ui [OPTIONS]
Launch the MLflow tracking UI for local viewing of run results. To launch
a production server, use the "mlflow server" command instead.
The UI will be visible at http://localhost:5000 by default, and only
accept connections from the local machine. To let the UI server accept
connections from other machines, you will need to pass ``--host 0.0.0.0``
to listen on all network interfaces (or a specific interface address).
Options:
--backend-store-uri PATH URI to which to persist experiment and run
data. Acceptable URIs are SQLAlchemy-compatible
database connection strings (e.g.
'sqlite:///path/to/file.db') or local
filesystem URIs (e.g.
'file:///absolute/path/to/directory'). By
default, data will be logged to the ./mlruns
directory.
--default-artifact-root URI Path to local directory to store artifacts, for
new experiments. Note that this flag does not
impact already-created experiments. Default:
./mlruns
-p, --port INTEGER The port to listen on (default: 5000).
-h, --host HOST The network address to listen on (default:
127.0.0.1). Use 0.0.0.0 to bind to all
addresses if you want to access the tracking
server from other machines.
--help Show this message and exit.```
Try it and see what happens.
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3720 次 |
| 最近记录: |