我不经常在R中使用日期,但我想这很容易.我有一个代表数据框中日期的列.我只想创建一个新的数据框,使用日期按月/年汇总第二列.什么是最好的方法?
我想要第二个数据帧,以便将其提供给绘图.
您将提供的任何帮助将不胜感激!
编辑:供参考:
> str(temp)
'data.frame': 215746 obs. of 2 variables:
$ date : POSIXct, format: "2011-02-01" "2011-02-01" "2011-02-01" ...
$ amount: num 1.67 83.55 24.4 21.99 98.88 ...
> head(temp)
date amount
1 2011-02-01 1.670
2 2011-02-01 83.550
3 2011-02-01 24.400
4 2011-02-01 21.990
5 2011-02-03 98.882
6 2011-02-03 24.900
Run Code Online (Sandbox Code Playgroud)
had*_*ley 50
我会这样做,lubridate
并将plyr
日期舍入到最接近的月份,以便更容易绘制:
library(lubridate)
df <- data.frame(
date = today() + days(1:300),
x = runif(300)
)
df$my <- floor_date(df$date, "month")
library(plyr)
ddply(df, "my", summarise, x = mean(x))
Run Code Online (Sandbox Code Playgroud)
kmm*_*kmm 37
可能有一个更优雅的解决方案,但分为几个月和几年,strftime()
然后aggregate()
应该这样做.然后重新组装绘图日期.
x <- as.POSIXct(c("2011-02-01", "2011-02-01", "2011-02-01"))
mo <- strftime(x, "%m")
yr <- strftime(x, "%Y")
amt <- runif(3)
dd <- data.frame(mo, yr, amt)
dd.agg <- aggregate(amt ~ mo + yr, dd, FUN = sum)
dd.agg$date <- as.POSIXct(paste(dd.agg$yr, dd.agg$mo, "01", sep = "-"))
Run Code Online (Sandbox Code Playgroud)
Jaa*_*aap 17
游戏有点晚,但另一种选择是使用data.table
:
library(data.table)
setDT(temp)[, .(mn_amt = mean(amount)), by = .(yr = year(date), mon = months(date))]
# or if you want to apply the 'mean' function to several columns:
# setDT(temp)[, lapply(.SD, mean), by=.(year(date), month(date))]
Run Code Online (Sandbox Code Playgroud)
这给了:
yr mon mn_amt
1: 2011 februari 42.610
2: 2011 maart 23.195
3: 2011 april 61.891
Run Code Online (Sandbox Code Playgroud)
如果你想要几个月的名字而不是数字,你可以使用:
setDT(temp)[, date := as.IDate(date)
][, .(mn_amt = mean(amount)), by = .(yr = year(date), mon = months(date))]
Run Code Online (Sandbox Code Playgroud)
这给了:
yr mon mn_amt
1: 2011 februari 42.610
2: 2011 maart 23.195
3: 2011 april 61.891
Run Code Online (Sandbox Code Playgroud)
如您所见,这将以您的系统语言(在我的情况下为荷兰语)中给出月份名称.
或使用的组合lubridate
和dplyr
:
temp %>%
group_by(yr = year(date), mon = month(date)) %>%
summarise(mn_amt = mean(amount))
Run Code Online (Sandbox Code Playgroud)
使用数据:
# example data (modified the OP's data a bit)
temp <- structure(list(date = structure(1:6, .Label = c("2011-02-01", "2011-02-02", "2011-03-03", "2011-03-04", "2011-04-05", "2011-04-06"), class = "factor"),
amount = c(1.67, 83.55, 24.4, 21.99, 98.882, 24.9)),
.Names = c("date", "amount"), class = c("data.frame"), row.names = c(NA, -6L))
Run Code Online (Sandbox Code Playgroud)
你可以这样做:
short.date = strftime(temp$date, "%Y/%m")
aggr.stat = aggregate(temp$amount ~ short.date, FUN = sum)
Run Code Online (Sandbox Code Playgroud)
只需使用xts包就可以了.
library(xts)
ts <- xts(temp$amount, as.Date(temp$date, "%Y-%m-%d"))
# convert daily data
ts_m = apply.monthly(ts, FUN)
ts_y = apply.yearly(ts, FUN)
ts_q = apply.quarterly(ts, FUN)
Run Code Online (Sandbox Code Playgroud)
其中FUN是一个汇总数据的函数(例如sum)
这是一个dplyr
选项:
library(dplyr)
df %>%
mutate(date = as.Date(date)) %>%
mutate(ym = format(date, '%Y-%m')) %>%
group_by(ym) %>%
summarize(ym_mean = mean(x))
Run Code Online (Sandbox Code Playgroud)