为多列绘制 seaborn catplots

ojp*_*ojp 3 python machine-learning matplotlib python-3.x seaborn

我有一个包含 93 个特征和 9 个类标签的数据框。我想用各自的类标签绘制每个特征的值,但是,我想生成一个包含 93 个图的子图,每个图代表数据集中的一个特征。我可以制作一个情节,它看起来像这样:

sns.catplot(x="feat_1", y="target", data=train)
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明

现在我基本上想重复同样的事情,但是以刻面网格的形式重复 93 次。我尝试创建一个包含 5 列和 19 行的子图,然后循环遍历轴但失败了......感谢您的帮助,我的数据看起来像这样(93 个特征列和一个目标列):

    feat_1  feat_2  feat_3  feat_4  feat_5  feat_6  feat_7  feat_8  feat_9  feat_10 ... feat_85 feat_86 feat_87 feat_88 feat_89 feat_90 feat_91 feat_92 feat_93 target
id                                                                                  
32518   0   0   0   1   0   0   0   0   0   0   ... 0   0   0   0   0   0   0   0   0   Class_6
31734   0   1   7   5   0   0   0   0   0   1   ... 0   0   0   1   2   0   1   4   0   Class_6
57027   0   0   0   0   0   0   0   2   0   0   ... 0   0   0   0   0   0   1   0   0   Class_9
31629   0   1   0   0   0   0   0   1   1   0   ... 0   0   0   1   2   0   0   0   0   Class_6
14216   2   0   0   0   0   0   0   0   0   0   ... 0   0   0   1   0   0   0   0   0   Class_2
17376   0   0   0   0   0   0   0   0   0   0   ... 0   2   0   1   0   0   0   0   0   Class_2
10520   1   0   0   0   0   0   0   0   0   0   ... 0   3   0   0   0   0   0   0   0   Class_2
7665    0   0   0   0   0   0   0   0   0   0   ... 0   2   0   3   0   0   0   0   0   Class_2
26692   0   0   0   0   0   0   0   0   0   0   ... 4   0   0   0   0   0   0   0   0   Class_4
36809   0   0   3   4   0   0   0   0   0   0   ... 0   0   0   0   0   0   0   1   0   Class_6
47959   0   1   0   3   0   2   1   0   0   1   ... 6   0   0   0   1   1   0   0   1   Class_7
22649   0   0   0   0   1   0   0   0   0   1   ... 21  0   1   0   0   2   0   0   0   Class_3
34550   0   0   1   2   0   0   1   0   0   0   ... 0   0   1   0   0   1   1   1   1   Class_6
39943   3   0   0   0   0   0   0   0   0   0   ... 0   0   2   0   0   0   0   0   0   Class_6
38900   1   0   6   14  0   0   1   0   0   0   ... 0   0   1   0   0   0   0   0   0   Class_6
26333   0   0   1   0   0   0   1   1   0   0   ... 0   0   1   1   0   0   0   0   0   Class_4
16126   0   0   0   0   0   0   0   0   0   0   ... 0   0   1   10  0   0   0   0   0   Class_2
10490   0   0   0   0   0   0   0   1   0   0   ... 0   0   0   0   0   0   0   3   0   Class_2
58603   0   0   0   0   0   0   0   1   0   0   ... 0   0   0   0   0   0   28  0   1   Class_9
52668   0   0   1   2   0   0   0   4   0   0   ... 0   0   0   0   4   0   0   0   0   Class_8
Run Code Online (Sandbox Code Playgroud)

Diz*_*ahi 5

要利用seaborn FacetGrid(由 使用catplot)的使用,您需要将数据框从“宽”转换为“长”

# dummy dataframe
N=20
N_features = 10
N_classes = 5
df = pd.DataFrame({f'feat_{i+1}': np.random.random(size=(N,)) for i in range(N_features)})
df['target'] = np.random.choice([f'Class_{i+1}' for i in range(N_classes)], size=(N,))

# transform from wide to long, then plot using the column 'features' to facet
df2 = df.melt(id_vars=['target'], var_name='features')
sns.catplot(data=df2, x='value', y='target', col='features', col_wrap=5, height=3, aspect=0.5)
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明