Jus*_*lvy 2 sql-server google-cloud-platform airflow google-cloud-composer
我是 GCP 和 Airflow 的新手,正在尝试通过 python 3 通过简单的 PYODBC 连接运行我的 python 管道。但是,我相信我已经找到了需要在机器上安装的内容 [Microsoft doc] https://docs.microsoft .com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-2017,但我不知道该去哪里GCP 来运行这些命令。我已经钻了几个深坑寻找答案,但不知道如何解决问题
这是我上传 DAG 时不断看到的错误:
这是 PYODBC 连接:
pyodbc.connect('DRIVER={Microsoft SQL Server};SERVER=servername;DATABASE=dbname;UID=username;PWD=password')
Run Code Online (Sandbox Code Playgroud)
当我在环境中打开我的 gcloud shell 并运行 Microsoft 下载时,它只是中止,当我下载 SDK 并从本地下载连接到项目时,它会自动中止或无法识别来自 Microsoft 的命令。任何人都可以就从哪里开始以及我做错了什么给出一些简单的说明吗?
这很简单 !DockerFile,KubernetesPodOperator,LD_LIBRARY_PATH等不需要只是一个基本的Python运营商将尽
需要考虑的要点
这里 'gs://bucket_created_by_composer' == '/home/airflow/gcs'
gcs bucket created by composer ->
-> data/
-> dags/
Run Code Online (Sandbox Code Playgroud)
循序渐进的方法
步骤1:在任何ubuntu实例上安装pyodbc、mssql odbc以获取驱动程序文件
出于考虑,让我们在 GCP VM Intance 上使用 ubuntu 1804 映像进行操作
#update the packages
sudo apt update
sudo apt-get update -y
curl https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
curl https://packages.microsoft.com/config/ubuntu/18.04/prod.list | sudo tee /etc/apt/sources.list.d/msprod.list
sudo apt-get update -y
echo Installing mssql-tools and unixODBC developer...
sudo ACCEPT_EULA=Y apt-get install -y mssql-tools unixodbc-dev
sudo apt-get update -y
sudo apt-get install -y mssql-tools #it includes sql_cmd and bcp (we dont need those)
sudo apt install python3-pip #installing pip3
pip3 install pyodbc
Run Code Online (Sandbox Code Playgroud)
第二步:获取Driver Files并上传到composer创建的gcs_bucket的data文件夹
cd /opt/microsoft
#now you can see there is one directory 'msodbcsql17', version may change
#we need to upload this directory to the data folder of gcs_bucket
#for this you may choose which ever approach suits you
#copying the directory to /<home/user> for proper zipping/uploading to gcs
cp -r msodbcsql17 /home/<user> #you may need to use sudo
#upload this /home/<user>/msodbcsql17 to any gcs_bucket
gsutil cp -r /home/<user>/msodbcsql17 gs://<your-gcs-bucket>
Run Code Online (Sandbox Code Playgroud)
将此文件夹从 gcs 存储桶下载到本地并将此文件夹上传到由 composer 创建的 gcs 存储桶的数据文件夹
选择任何方法/方法,主要目的是获取composer创建的gcs bucket的data文件夹中的msodbcsql17文件夹
最终结构:
gcs bucket created by composer ->
-> data/msodbcsql17/
-> dags/<your_dags.py>
Run Code Online (Sandbox Code Playgroud)
第 3 步:使用此 msodbcsql17 驱动程序进行 pyodbc 连接
示例 DAG:
import os
import time
import datetime
import argparse
import json
from airflow import DAG
import airflow
from airflow.operators import python_operator
default_dag_args = {
'start_date': airflow.utils.dates.days_ago(0), #
'provide_context': True
}
dag = DAG(
'pyodbc_test',
schedule_interval=None, #change for composer
default_args=default_dag_args
)
def check_connection(**kwargs):
print('hello')
driver='/home/airflow/gcs/data/msodbcsql17/lib64/libmsodbcsql-17.5.so.2.1'
#this is the main driver file, the exact location can be found on gcs_bucket/data folder or check the /etc/odbcinst.in file of ubuntu instance in which you installed the pyodbc earlier
def tconnection(ServerIp,LoginName,Password,mssql_portno):
""" A method which return connection object"""
import pyodbc
pyodbc.pooling = False
try:
sql_conn = pyodbc.connect("DRIVER={4};SERVER={0},{1};UID={2};PWD={3}".format(ServerIp,mssql_portno,LoginName,Password,driver))
except pyodbc.Error as ex:
sqlstate = ex.args[1]
raise
return sql_conn
con=tconnection('<your-server-ip>','<your-login-name>','<your-password>','1433')
#recommendation is to take the password and login from airflow connections
import pandas as pd
q='select * from <your-db-name>.<your-schema-name>.<your-table-name>'
df=pd.read_sql(q,con)
print(df)
Tcheck_connection= python_operator.PythonOperator(
task_id='Tcheck_connection',
python_callable=check_connection,
dag=dag )
#calling the task sequence
Tcheck_connection
Run Code Online (Sandbox Code Playgroud)
PYPI 包
pyodbc
pandas
Run Code Online (Sandbox Code Playgroud)
最近在 Composer 上测试过