bil*_*n44 5 python amazon-s3 amazon-web-services pandas amazon-sagemaker
这个命令:
BUCKET_TO_READ='my-bucket'
FILE_TO_READ='myFile'
data_location = 's3://{}/{}'.format(BUCKET_TO_READ, FILE_TO_READ)
df=pd.read_csv(data_location)
Run Code Online (Sandbox Code Playgroud)
失败了
ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden
Run Code Online (Sandbox Code Playgroud)
错误,我无法弄清楚为什么。这应该按照/sf/answers/3517142821/工作
这是我对存储桶的权限:
"Action": [
"s3:ListMultipartUploadParts",
"s3:ListBucket",
"s3:GetObjectVersionTorrent",
"s3:GetObjectVersionTagging",
"s3:GetObjectVersionAcl",
"s3:GetObjectVersion",
"s3:GetObjectTorrent",
"s3:GetObjectTagging",
"s3:GetObjectAcl",
"s3:GetObject"
Run Code Online (Sandbox Code Playgroud)
这些命令按预期工作:
role = get_execution_role()
region = boto3.Session().region_name
print(role)
print(region)
s3 = boto3.resource('s3')
bucket = s3.Bucket(BUCKET_TO_READ)
print(bucket.creation_date)
for my_bucket_object in bucket.objects.all():
print(my_bucket_object)
FILE_TO_READ = my_bucket_object.key
break
obj = s3.Object(BUCKET_TO_READ, FILE_TO_READ)
print(obj)
Run Code Online (Sandbox Code Playgroud)
所有这些打印语句都工作得很好。
我不确定这是否重要,但每个文件都在一个文件夹中,所以我的 FILE_TO_READ 看起来像folder/file.
该命令应该将文件下载到 sagemaker 也失败并返回 403:
import boto3
s3 = boto3.resource('s3')
s3.Object(BUCKET_TO_READ, FILE_TO_READ).download_file(FILE_TO_READ)
Run Code Online (Sandbox Code Playgroud)
当我打开终端并使用时也会发生这种情况
aws s3 cp AWSURI local_file_name
Run Code Online (Sandbox Code Playgroud)
原因是我们授予了存储桶而不是对象的权限。这将是授予"Resource": "arn:aws:s3:::bucket-name/"但不是"Resource": "arn:aws:s3:::bucket-name/*"
| 归档时间: |
|
| 查看次数: |
4634 次 |
| 最近记录: |