Mat*_*att 6 pandas apache-spark pyspark pyarrow
有没有人有在 Windows 上运行的本地 pyspark 会话上使用 Pandas UDF 的经验?我已经在 linux 上使用了它们,效果很好,但是在我的 Windows 机器上却没有成功。
环境:
python==3.7
pyarrow==0.15
pyspark==2.3.4
pandas==0.24
Run Code Online (Sandbox Code Playgroud)
java version "1.8.0_74"
示例脚本:
python==3.7
pyarrow==0.15
pyspark==2.3.4
pandas==0.24
Run Code Online (Sandbox Code Playgroud)
运行一段时间后(将 toPandas 阶段分成 200 个任务,每个任务占用一秒钟),它返回如下错误:
Traceback (most recent call last):
File "C:\miniconda3\envs\pandas_udf\lib\site-packages\pyspark\sql\dataframe.py", line 1953, in toPandas
tables = self._collectAsArrow()
File "C:\miniconda3\envs\pandas_udf\lib\site-packages\pyspark\sql\dataframe.py", line 2004, in _collectAsArrow
sock_info = self._jdf.collectAsArrowToPython()
File "C:\miniconda3\envs\pandas_udf\lib\site-packages\py4j\java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "C:\miniconda3\envs\pandas_udf\lib\site-packages\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "C:\miniconda3\envs\pandas_udf\lib\site-packages\py4j\protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o62.collectAsArrowToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 69 in stage 3.0 failed 1 times, most recent failure: Lost task 69.0 in stage 3.0 (TID 201, localhost, executor driver): java.lang.IllegalArgumentException
at java.nio.ByteBuffer.allocate(Unknown Source)
at org.apache.arrow.vector.ipc.message.MessageChannelReader.readNextMessage(MessageChannelReader.java:64)
at org.apache.arrow.vector.ipc.message.MessageSerializer.deserializeSchema(MessageSerializer.java:104)
at org.apache.arrow.vector.ipc.ArrowStreamReader.readSchema(ArrowStreamReader.java:128)
at org.apache.arrow.vector.ipc.ArrowReader.initialize(ArrowReader.java:181)
at org.apache.arrow.vector.ipc.ArrowReader.ensureInitialized(ArrowReader.java:172)
at org.apache.arrow.vector.ipc.ArrowReader.getVectorSchemaRoot(ArrowReader.java:65)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:161)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:121)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:290)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.hasNext(ArrowConverters.scala:96)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.foreach(ArrowConverters.scala:94)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.to(ArrowConverters.scala:94)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.toBuffer(ArrowConverters.scala:94)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$2.toArray(ArrowConverters.scala:94)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:945)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:945)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2074)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Run Code Online (Sandbox Code Playgroud)
您的java.lang.IllegalArgumentExceptioninpandas_udf与版本有关pyarrow,与操作系统环境无关。详情请参阅本期。
您有两种行动路线:
pyarrow到 v.0.14,或ARROW_PRE_0_15_IPC_FORMAT=1到SPARK_HOME/conf/spark-env.sh
spark-env.cmd在 conf 目录中有一个文件:set ARROW_PRE_0_15_IPC_FORMAT=1,如 Jonathan Taws 建议的那样小智 5
Sergey 答案的附录:如果您喜欢在 python 中构建自己的 SparkSession 并且不更改配置文件,则需要设置spark.yarn.appMasterEnv.ARROW_PRE_0_15_IPC_FORMAT本地执行器的环境变量spark.executorEnv.ARROW_PRE_0_15_IPC_FORMAT
spark_session = SparkSession.builder \
.master("yarn") \
.config('spark.yarn.appMasterEnv.ARROW_PRE_0_15_IPC_FORMAT',1)\
.config('spark.executorEnv.ARROW_PRE_0_15_IPC_FORMAT',1)
spark = spark_session.getOrCreate()
Run Code Online (Sandbox Code Playgroud)
希望这可以帮助!
| 归档时间: |
|
| 查看次数: |
2926 次 |
| 最近记录: |