gar*_*y69 5 python conv-neural-network pytorch
我传递一个torch.Tensor带有dtype的torch.uint8一个nn.Conv2d模块,它是给错误
运行时错误:值无法在没有溢出的情况下转换为 uint8_t 类型:-0.0344873
我的 conv2d 被定义为self.conv1 = nn.Conv2d(3, 6, 5). 这个错误来自于我的forward方法,当我通过了张像模块self.conv1(x)。张量的形状为 (4, 3, 480, 640)。我不知道如何解决这个问题。这是堆栈跟踪
Traceback (most recent call last):
File "cnn.py", line 54, in <module>
outputs = net(inputs)
File "/Users/my_repos/venv_projc/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "cnn.py", line 24, in forward
test = self.conv1(x)
File "/Users/my_repos/venv_projc/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/Users/my_repos/venv_projc/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 345, in forward
return self.conv2d_forward(input, self.weight)
File "/Users/my_repos/venv_projc/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 342, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: value cannot be converted to type uint8_t without overflow: -0.0344873
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2987 次 |
| 最近记录: |