Ram*_*qui 6 python machine-learning lda gensim topic-modeling
我创建了一个 Gensim LDA 模型,如本教程所示:https ://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/
lda_model = gensim.models.LdaMulticore(data_df['bow_corpus'], num_topics=10, id2word=dictionary, random_state=100, chunksize=100, passes=10, per_word_topics=True)
Run Code Online (Sandbox Code Playgroud)
它生成 10 个主题,log_perplexity 为:
lda_model.log_perplexity(data_df['bow_corpus']) = -5.325966117835991
但是当我在其上运行一致性模型来计算一致性分数时,如下所示:
coherence_model_lda = CoherenceModel(model=lda_model, texts=data_df['bow_corpus'].tolist(), dictionary=dictionary, coherence='c_v')
with np.errstate(invalid='ignore'):
lda_score = coherence_model_lda.get_coherence()
Run Code Online (Sandbox Code Playgroud)
我的 LDA-Score 是 nan。我在这里做错了什么?
解决了!Coherence Model 需要原始文本,而不是提供给 LDA_Model 的训练语料库 - 所以当我运行这个时:
coherence_model_lda = CoherenceModel(model=lda_model, texts=data_df['corpus'].tolist(), dictionary=dictionary, coherence='c_v')
with np.errstate(invalid='ignore'):
lda_score = coherence_model_lda.get_coherence()
Run Code Online (Sandbox Code Playgroud)
我的连贯性得分为:0.462
希望这可以帮助其他人犯同样的错误。谢谢!