ilo*_*ewt 10 python matplotlib scikit-learn
我试图很好地绘制一个混淆矩阵,所以我遵循了scikit-learn 的新版本 0.22 的内置绘图混淆矩阵函数。但是,我的混淆矩阵值的一个值是 153,但它在混淆矩阵图中显示为 1.5e+02:

按照scikit-learn 的文档,我发现了这个名为 的参数values_format,但我不知道如何操作这个参数以抑制科学记数法。我的代码如下。
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix
# import some data to play with
X = pd.read_csv("datasets/X.csv")
y = pd.read_csv("datasets/y.csv")
class_names = ['Not Fraud (positive)', 'Fraud (negative)']
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),
("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
disp = plot_confusion_matrix(logreg, X_test, y_test,
display_labels=class_names,
cmap=plt.cm.Greens,
normalize=normalize, values_format = '{:.5f}'.format)
disp.ax_.set_title(title)
print(title)
print(disp.confusion_matrix)
plt.show()
Run Code Online (Sandbox Code Playgroud)
小智 12
只需从调用参数声明中删除“.format”和 {} 括号:
disp = plot_confusion_matrix(logreg, X_test, y_test,
display_labels=class_names,
cmap=plt.cm.Greens,
normalize=normalize, values_format = '.5f')
Run Code Online (Sandbox Code Playgroud)
此外,您可以使用'.5g'避免十进制 0
采取从源头
ari*_*wan 10
如果有人使用seaborn\xc2\xb4sheatmap来绘制混淆矩阵,并且上面的答案都不起作用。您应该使用 关闭混淆矩阵中的科学计数法,如下seaborn所示fmt='g':
sns.heatmap(conf_matrix,annot=True, fmt='g')\nRun Code Online (Sandbox Code Playgroud)\n
只需传递values_format='' 示例:
plot_confusion_matrix(clf, X_test, Y_test, values_format = '')
Run Code Online (Sandbox Code Playgroud)