使用mean_cl_boot获取stat_summary计算出的值

Gab*_* G. 3 r mean ggplot2 confidence-interval tidyverse

我正在绘制一些具有mean_cl_boot较大置信区间的X 值

如何导出每组中fun.y = mean和值的文本?fun.data = mean_cl_boot

我有一个值区间mean_cl_boot,我想绘制它们并导出它们。

ggplot(iris, aes(x = Species, y = Petal.Length)) + 
geom_jitter(width = 0.5) + stat_summary(fun.y = mean, geom = "point", color = "red") + 
stat_summary(fun.data = mean_cl_boot, fun.args=(conf.int=0.9999), geom = "errorbar", width = 0.4)
Run Code Online (Sandbox Code Playgroud)

我必须绘制平均值 ( fun.y = mean) 值,其中:

stat_summary(fun.y=mean, geom="text", aes(label=sprintf("%1.1f", ..y..)),size=3, show.legend=FALSE
Run Code Online (Sandbox Code Playgroud)

但我不能和 一样mean_cl_boot

Jaa*_*aap 6

您可以访问stat_summarywith的数据ggplot_build

首先,将 ggplot 调用存储在一个对象中:

g <- ggplot(iris, aes(x = Species, y = Petal.Length)) + 
  geom_jitter(width = 0.5) + 
  stat_summary(fun.y = mean, geom = "point", color = "red") + 
  stat_summary(fun.data = mean_cl_boot, fun.args=(conf.int=0.9999), geom = "errorbar", width = 0.4)
Run Code Online (Sandbox Code Playgroud)

然后,与:

ggplot_build(g)$data[[3]]
Run Code Online (Sandbox Code Playgroud)

您将得到使用以下方法计算的值mean_cl_boot

  x group     y     ymin     ymax PANEL xmin xmax colour size linetype width alpha
1 1     1 1.462 1.386000 1.543501     1  0.8  1.2  black  0.5        1   0.4    NA
2 2     2 4.260 4.024899 4.462202     1  1.8  2.2  black  0.5        1   0.4    NA
3 3     3 5.552 5.337199 5.798202     1  2.8  3.2  black  0.5        1   0.4    NA
Run Code Online (Sandbox Code Playgroud)

为了获得正确的标签,您可以这样做:

# extract the data
mcb <- ggplot_build(g)$data[[3]]

# add the labels to the plot
g + geom_text(data = mcb,
              aes(x = group, y = ymin, label = round(ymin,2)),
              color = "blue",
              vjust = 1)
Run Code Online (Sandbox Code Playgroud)

结果:

在此输入图像描述

但可能更好的选择是使用包:

library(ggrepel)

g + geom_label_repel(data = mcb,
                     aes(x = group, y = ymin, label = round(ymin,2)),
                     color = "blue",
                     nudge_x = 0.2,
                     nudge_y = -0.2)
Run Code Online (Sandbox Code Playgroud)

结果是:

在此输入图像描述