Gab*_* G. 3 r mean ggplot2 confidence-interval tidyverse
我正在绘制一些具有mean_cl_boot
较大置信区间的X 值
如何导出每组中fun.y = mean
和值的文本?fun.data = mean_cl_boot
我有一个值区间mean_cl_boot
,我想绘制它们并导出它们。
ggplot(iris, aes(x = Species, y = Petal.Length)) +
geom_jitter(width = 0.5) + stat_summary(fun.y = mean, geom = "point", color = "red") +
stat_summary(fun.data = mean_cl_boot, fun.args=(conf.int=0.9999), geom = "errorbar", width = 0.4)
Run Code Online (Sandbox Code Playgroud)
我必须绘制平均值 ( fun.y = mean
) 值,其中:
stat_summary(fun.y=mean, geom="text", aes(label=sprintf("%1.1f", ..y..)),size=3, show.legend=FALSE
Run Code Online (Sandbox Code Playgroud)
但我不能和 一样mean_cl_boot
。
您可以访问stat_summary
with的数据ggplot_build
。
首先,将 ggplot 调用存储在一个对象中:
g <- ggplot(iris, aes(x = Species, y = Petal.Length)) +
geom_jitter(width = 0.5) +
stat_summary(fun.y = mean, geom = "point", color = "red") +
stat_summary(fun.data = mean_cl_boot, fun.args=(conf.int=0.9999), geom = "errorbar", width = 0.4)
Run Code Online (Sandbox Code Playgroud)
然后,与:
ggplot_build(g)$data[[3]]
Run Code Online (Sandbox Code Playgroud)
您将得到使用以下方法计算的值mean_cl_boot
:
Run Code Online (Sandbox Code Playgroud)x group y ymin ymax PANEL xmin xmax colour size linetype width alpha 1 1 1 1.462 1.386000 1.543501 1 0.8 1.2 black 0.5 1 0.4 NA 2 2 2 4.260 4.024899 4.462202 1 1.8 2.2 black 0.5 1 0.4 NA 3 3 3 5.552 5.337199 5.798202 1 2.8 3.2 black 0.5 1 0.4 NA
为了获得正确的标签,您可以这样做:
# extract the data
mcb <- ggplot_build(g)$data[[3]]
# add the labels to the plot
g + geom_text(data = mcb,
aes(x = group, y = ymin, label = round(ymin,2)),
color = "blue",
vjust = 1)
Run Code Online (Sandbox Code Playgroud)
结果:
但可能更好的选择是使用ggrepel包:
library(ggrepel)
g + geom_label_repel(data = mcb,
aes(x = group, y = ymin, label = round(ymin,2)),
color = "blue",
nudge_x = 0.2,
nudge_y = -0.2)
Run Code Online (Sandbox Code Playgroud)
结果是: