Alb*_*eal 7 python algorithm subset-sum
最近我对子集求和问题产生了兴趣,该问题是在超集中找到零和子集.我在SO上找到了一些解决方案,此外,我遇到了一个使用动态编程方法的特定解决方案.我根据他的定性描述在python中翻译了他的解决方案.我正在尝试对更大的列表进行优化,这会占用大量的内存.有人可以推荐优化或其他技术来解决这个特殊问题吗?这是我在python中的尝试:
import random
from time import time
from itertools import product
time0 = time()
# create a zero matrix of size a (row), b(col)
def create_zero_matrix(a,b):
return [[0]*b for x in xrange(a)]
# generate a list of size num with random integers with an upper and lower bound
def random_ints(num, lower=-1000, upper=1000):
return [random.randrange(lower,upper+1) for i in range(num)]
# split a list up into N and P where N be the sum of the negative values and P the sum of the positive values.
# 0 does not count because of additive identity
def split_sum(A):
N_list = []
P_list = []
for x in A:
if x < 0:
N_list.append(x)
elif x > 0:
P_list.append(x)
return [sum(N_list), sum(P_list)]
# since the column indexes are in the range from 0 to P - N
# we would like to retrieve them based on the index in the range N to P
# n := row, m := col
def get_element(table, n, m, N):
if n < 0:
return 0
try:
return table[n][m - N]
except:
return 0
# same definition as above
def set_element(table, n, m, N, value):
table[n][m - N] = value
# input array
#A = [1, -3, 2, 4]
A = random_ints(200)
[N, P] = split_sum(A)
# create a zero matrix of size m (row) by n (col)
#
# m := the number of elements in A
# n := P - N + 1 (by definition N <= s <= P)
#
# each element in the matrix will be a value of either 0 (false) or 1 (true)
m = len(A)
n = P - N + 1;
table = create_zero_matrix(m, n)
# set first element in index (0, A[0]) to be true
# Definition: Q(1,s) := (x1 == s). Note that index starts at 0 instead of 1.
set_element(table, 0, A[0], N, 1)
# iterate through each table element
#for i in xrange(1, m): #row
# for s in xrange(N, P + 1): #col
for i, s in product(xrange(1, m), xrange(N, P + 1)):
if get_element(table, i - 1, s, N) or A[i] == s or get_element(table, i - 1, s - A[i], N):
#set_element(table, i, s, N, 1)
table[i][s - N] = 1
# find zero-sum subset solution
s = 0
solution = []
for i in reversed(xrange(0, m)):
if get_element(table, i - 1, s, N) == 0 and get_element(table, i, s, N) == 1:
s = s - A[i]
solution.append(A[i])
print "Solution: ",solution
time1 = time()
print "Time execution: ", time1 - time0
Run Code Online (Sandbox Code Playgroud)
小智 5
我不太确定你的解决方案是精确的还是PTA(多时间近似).
但是,正如有人指出的那样,这个问题确实是NP-Complete.
意思是,每个已知(精确)算法都对输入的大小具有指数时间行为.
意思是,如果你可以在.01纳秒内处理1个操作,那么对于59个元素的列表,它将采取:
2^59 ops --> 2^59 seconds --> 2^26 years --> 1 year
-------------- ---------------
10.000.000.000 3600 x 24 x 365
Run Code Online (Sandbox Code Playgroud)
您可以找到启发式算法,它可以让您轻松找到多项式时间内的精确解.
另一方面,如果使用集合中数字值的边界来限制问题(到另一个),则问题复杂度会降低到多项式时间.但即使这样,消耗的内存空间也将是非常高阶的多项式.
消耗的内存将远远大于内存中的几千兆字节.甚至比硬盘上的几个tera字节大得多.
(这是针对集合中元素值的界限的小值)
可能是您的动态编程算法的情况.
在我看来,在构建初始化矩阵时,你使用的是1000的界限.
你可以尝试一个较小的界限.那就是......如果你的输入始终由小值组成.
祝好运!
Hacker News 上有人提出了以下解决方案,我非常喜欢。它恰好在 python 中:):
def subset_summing_to_zero (activities):
subsets = {0: []}
for (activity, cost) in activities.iteritems():
old_subsets = subsets
subsets = {}
for (prev_sum, subset) in old_subsets.iteritems():
subsets[prev_sum] = subset
new_sum = prev_sum + cost
new_subset = subset + [activity]
if 0 == new_sum:
new_subset.sort()
return new_subset
else:
subsets[new_sum] = new_subset
return []
Run Code Online (Sandbox Code Playgroud)
我花了几分钟的时间,它工作得很好。
归档时间: |
|
查看次数: |
8443 次 |
最近记录: |