我的 GPU 加速 opencv 代码比普通 opencv 慢

H H*_*H H 2 c++ opencv gpu

我从《Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA》一书中复制了两个例子来比较 CPU 和 GPU 的性能。

第一个代码:

    cv::Mat src = cv::imread("D:/Pics/Pen.jpg", 0); // Pen.jpg is a 4096 * 4096 GrayScacle picture.
    cv::Mat result_host1, result_host2, result_host3, result_host4, result_host5;

    //Get initial time in miliseconds
    int64 work_begin = getTickCount();
    cv::threshold(src, result_host1, 128.0, 255.0, cv::THRESH_BINARY);
    cv::threshold(src, result_host2, 128.0, 255.0, cv::THRESH_BINARY_INV);
    cv::threshold(src, result_host3, 128.0, 255.0, cv::THRESH_TRUNC);
    cv::threshold(src, result_host4, 128.0, 255.0, cv::THRESH_TOZERO);
    cv::threshold(src, result_host5, 128.0, 255.0, cv::THRESH_TOZERO_INV);

    //Get time after work has finished     
    int64 delta = getTickCount() - work_begin;
    //Frequency of timer
    double freq = getTickFrequency();
    double work_fps = freq / delta;
    std::cout << "Performance of Thresholding on CPU: " << std::endl;
    std::cout << "Time: " << (1 / work_fps) << std::endl;
    std::cout << "FPS: " << work_fps << std::endl;
    return 0;
Run Code Online (Sandbox Code Playgroud)

第二个代码:

    cv::Mat h_img1 = cv::imread("D:/Pics/Pen.jpg", 0);  // Pen.jpg is a 4096 * 4096 GrayScacle picture.
    cv::cuda::GpuMat d_result1, d_result2, d_result3, d_result4, d_result5, d_img1;
    //Measure initial time ticks
    int64 work_begin = getTickCount();
    d_img1.upload(h_img1);
    cv::cuda::threshold(d_img1, d_result1, 128.0, 255.0, cv::THRESH_BINARY);
    cv::cuda::threshold(d_img1, d_result2, 128.0, 255.0, cv::THRESH_BINARY_INV);
    cv::cuda::threshold(d_img1, d_result3, 128.0, 255.0, cv::THRESH_TRUNC);
    cv::cuda::threshold(d_img1, d_result4, 128.0, 255.0, cv::THRESH_TOZERO);
    cv::cuda::threshold(d_img1, d_result5, 128.0, 255.0, cv::THRESH_TOZERO_INV);

    cv::Mat h_result1, h_result2, h_result3, h_result4, h_result5;
    d_result1.download(h_result1);
    d_result2.download(h_result2);
    d_result3.download(h_result3);
    d_result4.download(h_result4);
    d_result5.download(h_result5);
    //Measure difference in time ticks
    int64 delta = getTickCount() - work_begin;
    double freq = getTickFrequency();
    //Measure frames per second
    double work_fps = freq / delta;
    std::cout << "Performance of Thresholding on GPU: " << std::endl;
    std::cout << "Time: " << (1 / work_fps) << std::endl;
    std::cout << "FPS: " << work_fps << std::endl;
    return 0;
Run Code Online (Sandbox Code Playgroud)

一切正常,除了:

“GPU 的速度低于 CPU”

第一个结果:

    Performance of Thresholding on CPU:
    Time: 0.0475497 
    FPS: 21.0306
Run Code Online (Sandbox Code Playgroud)

第二个结果:

    Performance of Thresholding on GPU:
    Time: 0.599032
    FPS: 1.66936
Run Code Online (Sandbox Code Playgroud)

然后,我决定取消上传和下载时间:

第三个代码:

    Performance of Thresholding on CPU:
    Time: 0.0475497 
    FPS: 21.0306
Run Code Online (Sandbox Code Playgroud)

但是,问题一直存在

第三个结果:

Performance of Thresholding on GPU: 
Time: 0.136095
FPS: 7.34779
Run Code Online (Sandbox Code Playgroud)

我对这个问题感到困惑。

         1st         2nd         3rd
         CPU         GPU         GPU
Time: 0.0475497   0.599032    0.136095
FPS:  21.0306     1.66936     7.34779
Run Code Online (Sandbox Code Playgroud)

请帮我。

GPU规格:

*********************************************************
NVIDIA Quadro K2100M

Micro architecture: Kepler

Compute capability version: 3.0

CUDA Version: 10.1
*********************************************************
Run Code Online (Sandbox Code Playgroud)

我的系统规格:

*********************************************************
laptop hp ZBook

CPU: Intel(R) Core(TM) i7-4910MQ CPU @ 2.90GHz 2.90 GHZ

RAM: 8.00 GB

OS: Windows 7, 64-bit, Ultimate, Service Pack 1
*********************************************************
Run Code Online (Sandbox Code Playgroud)

Bla*_*0ut 6

即使没有内存操作,我能想到 CPU 版本更快的两个原因:

1.在第 2 和第 3 代码版本中,您声明了结果 GpuMats 但实际上并未对其进行初始化,结果 GpuMats 的初始化将通过调用 GpuMat.create 在阈值方法内进行,这会导致 80MB 的 GPU 内存每次执行的分配,您可以通过初始化结果 GpuMats 一次然后重用它们来看到“性能改进”。使用原始的第三个代码,我得到以下结果(Geforce RTX 2080):

时间:0.010208 帧率:97.9624

当我将代码更改为:

...
d_resut1.create(h_img1.size(), CV_8UC1);
d_result2.create(h_img1.size(), CV_8UC1);
d_result3.create(h_img1.size(), CV_8UC1);
d_result4.create(h_img1.size(), CV_8UC1);
d_result5.create(h_img1.size(), CV_8UC1);
d_img1.upload(h_img1);
//Measure initial time ticks
int64 work_begin = getTickCount();
cv::cuda::threshold(d_img1, d_result1, 128.0, 255.0, cv::THRESH_BINARY);
cv::cuda::threshold(d_img1, d_result2, 128.0, 255.0, cv::THRESH_BINARY_INV);
cv::cuda::threshold(d_img1, d_result3, 128.0, 255.0, cv::THRESH_TRUNC);
cv::cuda::threshold(d_img1, d_result4, 128.0, 255.0, cv::THRESH_TOZERO);
cv::cuda::threshold(d_img1, d_result5, 128.0, 255.0, cv::THRESH_TOZERO_INV);
...
Run Code Online (Sandbox Code Playgroud)

我得到以下结果(好 2) 时间:0.00503374 FPS:198.659

While the GpuMat result pre-allocation introduce a major performance gain, the same modification for the CPU version doesn't.

2. K2100M is not a very strong GPU (576 cores @ 665 MHz) and taking into account that the OpenCV is probably (depending on how you compiled it) using multi-threading with SIMD instructions under the hood for the CPU (2.90GHz with 8 virual cores) version the results are not that surprising

Edit: By profiling the application using NVIDIA Nsight systems you can understand better the GPU memory operations penalties : 应用程序分析

As you can see, only allocating and freeing the memory takes 10.5ms while the thresholding itself only takes 5ms