无论如何要在带有 AMD GPU 的 Mac 中使用 Keras?

Bik*_*ram 12 pyopencl amd-gpu keras tensorflow2.0 plaidml

我有一台配备 AMD 处理器的 MacBook Pro,我想在这个 GPU 中运行 Keras(Tensorflow 后端)。我开始知道 Keras 只适用于 NVIDIA GPU。解决方法是什么(如果可能)?

Bik*_*ram 20

您可以使用OpenCL库来克服这个问题。我已经对其进行了测试,它对我来说工作正常。

注意:我有 python 3.7 版,我将使用 pip3 进行软件包安装。

脚步:

  1. 使用以下命令安装 OpenCL 包

    pip3 install pyopencl

  2. 使用以下命令安装PlaidML

    pip3 install pip install plaidml-keras

  3. 运行PlaidML 的设置。设置时,您可能会收到选择 GPU 的提示。如果设置正确,您将在最后收到一条成功消息。

    plaidml-setup

  4. 安装plaidbench以在您的 GPU 上测试 plaidml。

    pip3 install plaidbench

  5. 测试一下。如果一切顺利,您将获得基准分数。

    plaidbench keras mobilenet

  6. 现在我们必须设置一个环境路径。把它放在你的代码的顶部。

import os
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"

os.environ["RUNFILES_DIR"] = "/Library/Frameworks/Python.framework/Versions/3.7/share/plaidml"
# plaidml might exist in different location. Look for "/usr/local/share/plaidml" and replace in above path

os.environ["PLAIDML_NATIVE_PATH"] = "/Library/Frameworks/Python.framework/Versions/3.7/lib/libplaidml.dylib"
# libplaidml.dylib might exist in different location. Look for "/usr/local/lib/libplaidml.dylib" and replace in above path
Run Code Online (Sandbox Code Playgroud)
  1. 在实际代码中测试。在代码中使用keras而不是tensorflow.keras运行以下命令。(keras 安装在在 GPU 中运行的第 2 步)
import os

# IMPORTANT: PATH MIGHT BE DIFFERENT. SEE STEP 6
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
os.environ["RUNFILES_DIR"] = "/Library/Frameworks/Python.framework/Versions/3.7/share/plaidml"
os.environ["PLAIDML_NATIVE_PATH"] = "/Library/Frameworks/Python.framework/Versions/3.7/lib/libplaidml.dylib"

# Don't use tensorflow.keras anywhere, instead use keras
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Run Code Online (Sandbox Code Playgroud)

当你运行这个你会得到

Using plaidml.keras.backend backend.
INFO:plaidml:Opening device "metal_intel(r)_iris(tm)_graphics_6100.0"
# or whatever GPU you selected in step 3
Run Code Online (Sandbox Code Playgroud)

这确认您正在 GPU 中运行它。

参考:https : //towardsdatascience.com/gpu-accelerated-machine-learning-on-macos-48d53ef1b545

  • PlaidML 可以使用 Metal 在 MacBook 上运行(它的性能比 OpenCL 更好,至少在我的情况下是这样),因此步骤 1 是可选的。另外,步骤 6 无需设置 RUNFILES_DIR 和 PLAIDML_NATIVE_PATH 的路径即可工作,唯一需要的环境变量是 KERAS_BACKEND (2认同)