我如何使用 tensorflow 2 进行均衡学习率?

Ник*_*нов 4 python tensorflow generative-adversarial-network

我正在尝试使用 tensorflow 版本 2 实现 StyleGAN,但我不知道如何进行均衡学习率。我尝试用这种方式缩放渐变:

等级均衡

但它不能正常工作。

请帮忙。

Sim*_*mas 6

您可以只创建一个自定义层。

class DenseEQ(Dense):
    """
    Standard dense layer but includes learning rate equilization
    at runtime as per Karras et al. 2017.

    Inherits Dense layer and overides the call method.
    """
    def __init__(self, **kwargs):
        if 'kernel_initializer' in kwargs:
            raise Exception("Cannot override kernel_initializer")
        super().__init__(kernel_initializer=normal(0,1), **kwargs)

    def build(self, input_shape):
        super().build(input_shape)
        # The number of inputs
        n = np.product([int(val) for val in input_shape[1:]])
        # He initialisation constant
        self.c = np.sqrt(2/n)

    def call(self, inputs):
        output = K.dot(inputs, self.kernel*self.c) # scale kernel
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')
        if self.activation is not None:
            output = self.activation(output)
        return output

Run Code Online (Sandbox Code Playgroud)

然后像往常一样创建一个模型......

model_in = Input(shape(12,))
x = DenseEq(name="whatever_1")(model_in)
x = LeakyRelu(0.2)(x)
x = DenseEq(name="whatever_2")(model_in)
model_out = LeakyRelu(0.2)(x)
model = Model(model_in, model_out)
Run Code Online (Sandbox Code Playgroud)

你可以对卷积做同样的事情。

class Conv2DEQ(Conv2D):
    """
    Standard Conv2D layer but includes learning rate equilization
    at runtime as per Karras et al. 2017.

    Inherits Conv2D layer and overrides the call method, following
    https://github.com/keras-team/keras/blob/master/keras/layers/convolutional.py

    """
    def __init__(self, **kwargs):
        if 'kernel_initializer' in kwargs:
            raise Exception("Cannot override kernel_initializer")
        super().__init__(kernel_initializer=normal(0,1), **kwargs)

    def build(self, input_shape):
        super().build(input_shape)
        # The number of inputs
        n = np.product([int(val) for val in input_shape[1:]])
        # He initialisation constant
        self.c = np.sqrt(2/n)

    def call(self, inputs):
        if self.rank == 2:
            outputs = K.conv2d(
                inputs,
                self.kernel*self.c, # scale kernel
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs

Run Code Online (Sandbox Code Playgroud)