roc*_*234 12 python text-classification tensorflow huggingface-transformers
我正在尝试使用 Hugging Face 'Transformers' 库提供的不同转换器架构对自定义数据(采用 csv 格式)进行二进制文本分类。我正在使用这篇Tensorflow 博客文章作为参考。
我正在使用以下代码将自定义数据集加载为“tf.data.Dataset”格式:
def get_dataset(file_path, **kwargs):
dataset = tf.data.experimental.make_csv_dataset(
file_path,
batch_size=5, # Artificially small to make examples easier to show.
na_value="",
num_epochs=1,
ignore_errors=True,
**kwargs)
return dataset
Run Code Online (Sandbox Code Playgroud)
在此之后,当我尝试使用“glue_convert_examples_to_features”方法进行标记化时,如下所示:
train_dataset = glue_convert_examples_to_features(
examples = train_data,
tokenizer = tokenizer,
task = None,
label_list = ['0', '1'],
max_length = 128
)
Run Code Online (Sandbox Code Playgroud)
在以下位置引发错误“UnboundLocalError:分配前引用的局部变量‘处理器’”:
if is_tf_dataset:
example = processor.get_example_from_tensor_dict(example)
example = processor.tfds_map(example)
Run Code Online (Sandbox Code Playgroud)
在所有示例中,我看到他们正在使用诸如“mrpc”之类的任务,这些任务是预定义的并且有一个glue_processor 来处理。在源代码中的“第 85 行”处引发错误。
任何人都可以使用“自定义数据”帮助解决此问题吗?
Dom*_*i W 13
我有同样的启动问题。
这个Kaggle 提交对我帮助很大。在那里,您可以看到如何根据所选的预训练模型对数据进行标记:
from transformers import BertTokenizer
from keras.preprocessing.sequence import pad_sequences
bert_model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(bert_model_name, do_lower_case=True)
MAX_LEN = 128
def tokenize_sentences(sentences, tokenizer, max_seq_len = 128):
tokenized_sentences = []
for sentence in tqdm(sentences):
tokenized_sentence = tokenizer.encode(
sentence, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
max_length = max_seq_len, # Truncate all sentences.
)
tokenized_sentences.append(tokenized_sentence)
return tokenized_sentences
def create_attention_masks(tokenized_and_padded_sentences):
attention_masks = []
for sentence in tokenized_and_padded_sentences:
att_mask = [int(token_id > 0) for token_id in sentence]
attention_masks.append(att_mask)
return np.asarray(attention_masks)
input_ids = tokenize_sentences(df_train['comment_text'], tokenizer, MAX_LEN)
input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long", value=0, truncating="post", padding="post")
attention_masks = create_attention_masks(input_ids)
Run Code Online (Sandbox Code Playgroud)
之后,您应该拆分 ID 和掩码:
from sklearn.model_selection import train_test_split
labels = df_train[label_cols].values
train_ids, validation_ids, train_labels, validation_labels = train_test_split(input_ids, labels, random_state=0, test_size=0.1)
train_masks, validation_masks, _, _ = train_test_split(attention_masks, labels, random_state=0, test_size=0.1)
train_size = len(train_inputs)
validation_size = len(validation_inputs)
Run Code Online (Sandbox Code Playgroud)
此外,我看着源的glue_convert_examples_to_features
。在那里您可以看到如何创建与 BERT 模型兼容的tf.data.dataset。我为此创建了一个函数:
def create_dataset(ids, masks, labels):
def gen():
for i in range(len(train_ids)):
yield (
{
"input_ids": ids[i],
"attention_mask": masks[i]
},
labels[i],
)
return tf.data.Dataset.from_generator(
gen,
({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64),
(
{
"input_ids": tf.TensorShape([None]),
"attention_mask": tf.TensorShape([None])
},
tf.TensorShape([None]),
),
)
train_dataset = create_dataset(train_ids, train_masks, train_labels)
Run Code Online (Sandbox Code Playgroud)
然后我像这样使用数据集:
from transformers import TFBertForSequenceClassification, BertConfig
model = TFBertForSequenceClassification.from_pretrained(
bert_model_name,
config=BertConfig.from_pretrained(bert_model_name, num_labels=20)
)
# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.CategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
# Train and evaluate using tf.keras.Model.fit()
history = model.fit(train_dataset, epochs=1, steps_per_epoch=115, validation_data=val_dataset, validation_steps=7)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2426 次 |
最近记录: |