blu*_*yke 6 javascript c++ node.js node-gyp
我在 NODEjs 中有一个缓冲区形式的图像,我想调整它的大小。
理论上这应该能够在nodeJS中完成,因为我可以访问包含所有像素数据的缓冲区。
我已经在很多地方找到了一种使用 NATIVE(仅限!)nodejs 调整图像大小的简单方法,没有外部库,但我只找到了使用库的解决方案:https: //www.npmjs.com/package/gm
Node.js:无需 ImageMagick 即可调整图像大小 在 Node.js 中调整图像大小的简单方法?
使用 Nodejs 和 Imagemagick 调整图像大小
Node.js:不使用 ImageMagick 调整图像大小
使用 jimp 在 Node.js 中调整图像大小并获取新图像的路径
但所有这些解决方案都使用某种库,但我只想使用普通的 NodeJS。
我可以用缓冲区读取像素,所以我应该能够编写一个调整大小的缓冲区,就像这个 C++ 线程http://www.cplusplus.com/forum/general/2615/和许多其他线程一样,只需循环像素并调整它的大小..
我发现这个问题Resizing an image in an HTML5 canvas,它使用纯客户端JavaScript实现了图像调整大小,而不依赖于画布drawImage来调整它的大小(仅获取图像数据),这是他使用的代码:
function lanczosCreate(lobes) {
return function(x) {
if (x > lobes)
return 0;
x *= Math.PI;
if (Math.abs(x) < 1e-16)
return 1;
var xx = x / lobes;
return Math.sin(x) * Math.sin(xx) / x / xx;
};
}
// elem: canvas element, img: image element, sx: scaled width, lobes: kernel radius
function thumbnailer(elem, img, sx, lobes) {
this.canvas = elem;
elem.width = img.width;
elem.height = img.height;
elem.style.display = "none";
this.ctx = elem.getContext("2d");
this.ctx.drawImage(img, 0, 0);
this.img = img;
this.src = this.ctx.getImageData(0, 0, img.width, img.height);
this.dest = {
width : sx,
height : Math.round(img.height * sx / img.width),
};
this.dest.data = new Array(this.dest.width * this.dest.height * 3);
this.lanczos = lanczosCreate(lobes);
this.ratio = img.width / sx;
this.rcp_ratio = 2 / this.ratio;
this.range2 = Math.ceil(this.ratio * lobes / 2);
this.cacheLanc = {};
this.center = {};
this.icenter = {};
setTimeout(this.process1, 0, this, 0);
}
thumbnailer.prototype.process1 = function(self, u) {
self.center.x = (u + 0.5) * self.ratio;
self.icenter.x = Math.floor(self.center.x);
for (var v = 0; v < self.dest.height; v++) {
self.center.y = (v + 0.5) * self.ratio;
self.icenter.y = Math.floor(self.center.y);
var a, r, g, b;
a = r = g = b = 0;
for (var i = self.icenter.x - self.range2; i <= self.icenter.x + self.range2; i++) {
if (i < 0 || i >= self.src.width)
continue;
var f_x = Math.floor(1000 * Math.abs(i - self.center.x));
if (!self.cacheLanc[f_x])
self.cacheLanc[f_x] = {};
for (var j = self.icenter.y - self.range2; j <= self.icenter.y + self.range2; j++) {
if (j < 0 || j >= self.src.height)
continue;
var f_y = Math.floor(1000 * Math.abs(j - self.center.y));
if (self.cacheLanc[f_x][f_y] == undefined)
self.cacheLanc[f_x][f_y] = self.lanczos(Math.sqrt(Math.pow(f_x * self.rcp_ratio, 2)
+ Math.pow(f_y * self.rcp_ratio, 2)) / 1000);
weight = self.cacheLanc[f_x][f_y];
if (weight > 0) {
var idx = (j * self.src.width + i) * 4;
a += weight;
r += weight * self.src.data[idx];
g += weight * self.src.data[idx + 1];
b += weight * self.src.data[idx + 2];
}
}
}
var idx = (v * self.dest.width + u) * 3;
self.dest.data[idx] = r / a;
self.dest.data[idx + 1] = g / a;
self.dest.data[idx + 2] = b / a;
}
if (++u < self.dest.width)
setTimeout(self.process1, 0, self, u);
else
setTimeout(self.process2, 0, self);
};
thumbnailer.prototype.process2 = function(self) {
self.canvas.width = self.dest.width;
self.canvas.height = self.dest.height;
self.ctx.drawImage(self.img, 0, 0, self.dest.width, self.dest.height);
self.src = self.ctx.getImageData(0, 0, self.dest.width, self.dest.height);
var idx, idx2;
for (var i = 0; i < self.dest.width; i++) {
for (var j = 0; j < self.dest.height; j++) {
idx = (j * self.dest.width + i) * 3;
idx2 = (j * self.dest.width + i) * 4;
self.src.data[idx2] = self.dest.data[idx];
self.src.data[idx2 + 1] = self.dest.data[idx + 1];
self.src.data[idx2 + 2] = self.dest.data[idx + 2];
}
}
self.ctx.putImageData(self.src, 0, 0);
self.canvas.style.display = "block";
};
Run Code Online (Sandbox Code Playgroud)
然后对于图像(用 制作var img = new Image(); img.src = "something"):
img.onload = function() {
var canvas = document.createElement("canvas");
new thumbnailer(canvas, img, 188, 3); //this produces lanczos3
// but feel free to raise it up to 8. Your client will appreciate
// that the program makes full use of his machine.
document.body.appendChild(canvas);
};
Run Code Online (Sandbox Code Playgroud)
首先,这在客户端上非常慢,但在服务器上仍然可能更快。需要替换/节点中不存在的东西是ctx.getImageData(可以用缓冲区复制)
有谁知道在nodejs中从哪里开始,这是否具有实用的性能?如果不是,可以使用上面提到的 C++ 教程的代码,用纯 node-gyp 来提高性能吗?(如下):
#include<iostream>
class RawBitMap
{
public:
RawBitMap():_data(NULL), _width(0),_height(0)
{};
bool Initialise()
{
// Set a basic 2 by 2 bitmap for testing.
//
if(_data != NULL)
delete[] _data;
_width = 2;
_height = 2;
_data = new unsigned char[ GetByteCount() ];
//
_data[0] = 0; // Pixels(0,0) red value
_data[1] = 1; // Pixels(0,0) green value
_data[2] = 2; // Pixels(0,0) blue value
_data[3] = 253; // Pixels(1,0)
_data[4] = 254;
_data[5] = 255;
_data[6] = 253; // Pixels(0,1)
_data[7] = 254;
_data[8] = 255;
_data[9] = 0; // Pixels(1,1)
_data[10] = 1;
_data[11] = 2;
return true;
}
// Perform a basic 'pixel' enlarging resample.
bool Resample(int newWidth, int newHeight)
{
if(_data == NULL) return false;
//
// Get a new buuffer to interpolate into
unsigned char* newData = new unsigned char [newWidth * newHeight * 3];
double scaleWidth = (double)newWidth / (double)_width;
double scaleHeight = (double)newHeight / (double)_height;
for(int cy = 0; cy < newHeight; cy++)
{
for(int cx = 0; cx < newWidth; cx++)
{
int pixel = (cy * (newWidth *3)) + (cx*3);
int nearestMatch = (((int)(cy / scaleHeight) * (_width *3)) + ((int)(cx / scaleWidth) *3) );
newData[pixel ] = _data[nearestMatch ];
newData[pixel + 1] = _data[nearestMatch + 1];
newData[pixel + 2] = _data[nearestMatch + 2];
}
}
//
delete[] _data;
_data = newData;
_width = newWidth;
_height = newHeight;
return true;
}
// Show the values of the Bitmap for demo.
void ShowData()
{
std::cout << "Bitmap data:" << std::endl;
std::cout << "============" << std::endl;
std::cout << "Width: " << _width << std::endl;
std::cout << "Height: " << _height << std::endl;
std::cout << "Data:" << std::endl;
for(int cy = 0; cy < _height; cy++)
{
for(int cx = 0; cx < _width; cx++)
{
int pixel = (cy * (_width *3)) + (cx*3);
std::cout << "rgb(" << (int)_data[pixel] << "," << (int)_data[pixel+1] << "," << (int)_data[pixel+2] << ") ";
}
std::cout << std::endl;
}
std::cout << "_________________________________________________________" << std::endl;
}
// Return the total number of bytes in the Bitmap.
inline int GetByteCount()
{
return (_width * _height * 3);
}
private:
int _width;
int _height;
unsigned char* _data;
};
int main(int argc, char* argv[])
{
RawBitMap bitMap;
bitMap.Initialise();
bitMap.ShowData();
if (!bitMap.Resample(4,4))
std::cout << "Failed to resample bitMap:" << std::endl ;
bitMap.ShowData();
bitMap.Initialise();
if (!bitMap.Resample(3,3))
std::cout << "Failed to resample bitMap:" << std::endl ;
bitMap.ShowData();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
我猜这是创建一个 2x2 位图并调整其大小,但基本原理仍然应该能够应用于纯 node-gyp。还有其他人这样做过吗?这实用吗?
找到了一种简单、快速的方法,仅使用用于节点的pngjs库(它是用纯本机节点编写的,因此即使可以优化),以及内置的流库。因此,在代码顶部只需var PNG = require("pngjs").PNG, stream = require("stream"); 使用以下代码:
function cobRes(iBuf, width, cb) {
b2s(iBuf)
.pipe(new PNG({
filterType: -1
}))
.on('parsed', function() {
var nw = width;
var nh = nw * this.height /this.width;
var f = resize(this, nw, nh);
sbuff(f.pack(), b=>{
cb(b);
})
})
function resize(srcPng, width, height) {
var rez = new PNG({
width:width,
height:height
});
for(var i = 0; i < width; i++) {
var tx = i / width,
ssx = Math.floor(tx * srcPng.width);
for(var j = 0; j < height; j++) {
var ty = j / height,
ssy = Math.floor(ty * srcPng.height);
var indexO = (ssx + srcPng.width * ssy) * 4,
indexC = (i + width * j) * 4,
rgbaO = [
srcPng.data[indexO ],
srcPng.data[indexO+1],
srcPng.data[indexO+2],
srcPng.data[indexO+3]
]
rez.data[indexC ] = rgbaO[0];
rez.data[indexC+1] = rgbaO[1];
rez.data[indexC+2] = rgbaO[2];
rez.data[indexC+3] = rgbaO[3];
}
}
return rez;
}
function b2s(b) {
var str = new stream.Readable();
str.push(b);
str.push(null);
return str;
}
function sbuff(stream, cb) {
var bufs = []
var pk = stream;
pk.on('data', (d)=> {
bufs.push(d);
})
pk.on('end', () => {
var buff = Buffer.concat(bufs);
cb(buff);
});
}
}
Run Code Online (Sandbox Code Playgroud)
然后使用:
cobRes(fs.readFileSync("somePNGfile.png"), 200, buffer => fs.writeFileSync("new.png", buffer))
Run Code Online (Sandbox Code Playgroud)
不知道为什么每个人都为此使用复杂的库:)
| 归档时间: |
|
| 查看次数: |
6239 次 |
| 最近记录: |