Gab*_*abe 5 python keras tensorflow tensorflow2.0
我试图通过使用参数矩阵来隔离一些特定于用户的参数,其中每个数组将学习特定于该用户的参数。
我想使用用户 ID 索引矩阵,并将参数连接到其他功能。
最后,有一些完全连接的层以获得理想的结果。
但是,我在代码的最后一行不断收到此错误。
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-1-93de3591ccf0> in <module>
20 # combined = tf.keras.layers.Concatenate(axis=-1)([le_param, le])
21
---> 22 net = tf.keras.layers.Dense(128)(combined)
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
793 # framework.
794 if build_graph and base_layer_utils.needs_keras_history(inputs):
--> 795 base_layer_utils.create_keras_history(inputs)
796
797 # Clear eager losses on top level model call.
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in create_keras_history(tensors)
182 keras_tensors: The Tensors found that came from a Keras Layer.
183 """
--> 184 _, created_layers = _create_keras_history_helper(tensors, set(), [])
185 return created_layers
186
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
229 constants[i] = backend.function([], op_input)([])
230 processed_ops, created_layers = _create_keras_history_helper(
--> 231 layer_inputs, processed_ops, created_layers)
232 name = op.name
233 node_def = op.node_def.SerializeToString()
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
229 constants[i] = backend.function([], op_input)([])
230 processed_ops, created_layers = _create_keras_history_helper(
--> 231 layer_inputs, processed_ops, created_layers)
232 name = op.name
233 node_def = op.node_def.SerializeToString()
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
227 else:
228 with ops.init_scope():
--> 229 constants[i] = backend.function([], op_input)([])
230 processed_ops, created_layers = _create_keras_history_helper(
231 layer_inputs, processed_ops, created_layers)
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py in __call__(self, inputs)
3746 return nest.pack_sequence_as(
3747 self._outputs_structure,
-> 3748 [x._numpy() for x in outputs], # pylint: disable=protected-access
3749 expand_composites=True)
3750
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py in <listcomp>(.0)
3746 return nest.pack_sequence_as(
3747 self._outputs_structure,
-> 3748 [x._numpy() for x in outputs], # pylint: disable=protected-access
3749 expand_composites=True)
3750
ValueError: Cannot convert a Tensor of dtype resource to a NumPy array.
Run Code Online (Sandbox Code Playgroud)
重现错误的代码:
import tensorflow as tf
num_uids = 50
input_uid = tf.keras.layers.Input(shape=(1,), dtype=tf.int32)
params = tf.Variable(tf.random.normal((num_uids, 9)), trainable=True)
param = tf.gather_nd(params, input_uid)
input_shared_features = tf.keras.layers.Input(shape=(128,), dtype=tf.float32)
combined = tf.concat([param, input_shared_features], axis=-1)
net = tf.keras.layers.Dense(128)(combined)
Run Code Online (Sandbox Code Playgroud)
我尝试了几件事:
奇怪的是,如果我指定项目数并用 tf.Variable 替换 Input,代码将按预期工作:
import tensorflow as tf
num_uids = 50
input_uid = tf.Variable(tf.ones((32, 1), dtype=tf.int32))
params = tf.Variable(tf.random.normal((num_uids, 9)), trainable=True)
param = tf.gather_nd(params, input_uid)
input_shared_features = tf.Variable(tf.ones((32, 128), dtype=tf.float32))
combined = tf.concat([param, input_shared_features], axis=-1)
net = tf.keras.layers.Dense(128)(combined)
Run Code Online (Sandbox Code Playgroud)
我在 Python 3.6.10 中使用 Tensorflow 2.1
当我尝试tf.lookup.StaticHashTable在 TensorFlow 2.x 中使用 TensorFlow 表查找 ( )时,我遇到了类似的问题。我最终通过将其保留在Custom Keras Layer中来解决它。相同的解决方案似乎也适用于这个问题\xe2\x80\x94,至少直到问题中提到的版本为止。(我尝试使用 TensorFlow 2.0、2.1 和 2.2,它在所有这些版本中都有效。)
import tensorflow as tf\n\nnum_uids = 50\ninput_uid = tf.keras.Input(shape=(1,), dtype=tf.int32)\ninput_shared_features = tf.keras.layers.Input(shape=(128,), dtype=tf.float32)\n\nclass CustomLayer(tf.keras.layers.Layer):\n def __init__(self,num_uids):\n super(CustomLayer, self).__init__(trainable=True,dtype=tf.int64)\n self.num_uids = num_uids\n\n def build(self,input_shape):\n self.params = tf.Variable(tf.random.normal((num_uids, 9)), trainable=True)\n self.built=True\n\n def call(self, input_uid,input_shared_features):\n param = tf.gather_nd(self.params, input_uid)\n combined = tf.concat([param, input_shared_features], axis=-1)\n return combined\n\n def get_config(self):\n config = super(CustomLayer, self).get_config()\n config.update({\'num_uids\': self.num_uids})\n return config\n\ncombined = CustomLayer(num_uids)(input_uid,input_shared_features)\nnet = tf.keras.layers.Dense(128)(combined)\nmodel = tf.keras.Model(inputs={\'input_uid\':input_uid,\'input_shared_features\':input_shared_features},outputs=net)\nmodel.summary()\nRun Code Online (Sandbox Code Playgroud)\n\n模型摘要如下:
\n\nModel: "model"\n__________________________________________________________________________________________________\nLayer (type) Output Shape Param # Connected to \n==================================================================================================\ninput_1 (InputLayer) [(None, 1)] 0 \n__________________________________________________________________________________________________\ninput_2 (InputLayer) [(None, 128)] 0 \n__________________________________________________________________________________________________\ncustom_layer (CustomLayer) (None, 137) 450 input_1[0][0] \n__________________________________________________________________________________________________\ndense (Dense) (None, 128) 17664 custom_layer[0][0] \n==================================================================================================\nTotal params: 18,114\nTrainable params: 18,114\nNon-trainable params: 0\nRun Code Online (Sandbox Code Playgroud)\n\n有关更多信息,您可以参考tf.keras.layers.Layer文档。
如果您想参考查表问题和解决方案,以下是链接:
\n\n| 归档时间: |
|
| 查看次数: |
3535 次 |
| 最近记录: |