Ril*_*Hun 3 python pipeline google-cloud-dataflow snowflake-cloud-data-platform apache-beam
我看到 BigQuery 有一个内置的 I/O 连接器,但我们的很多数据都存储在 Snowflake 中。是否有连接到 Snowflake 的解决方法?我唯一能想到的就是使用 sqlalchemy 运行查询,然后将输出转储到 Cloud Storage Bucket,然后 Apache-Beam 可以从存储在 Bucket 中的文件中获取输入数据。
最近向 Beam 添加了 Snowflake Python 和 Java 连接器。
现在(版本 2.24)它仅支持apache_beam.io.external.snowflake
.
在 2.25 版本中,WriteToSnowflake 也将在apache_beam.io.snowflake
模块中可用。您仍然可以使用旧路径,但在此版本中将被视为已弃用。
目前它仅在 Flink Runner 上运行,但也正在努力使其也可用于其他运行器。
此外,它是一种跨语言转换,因此可能需要进行一些额外的设置 - 此处的 pydoc 中有很好的记录(我将其粘贴在下面):https : //github.com/apache/beam/blob/release-2.24 .0/sdks/python/apache_beam/io/external/snowflake.py
Snowflake transforms tested against Flink portable runner.
**Setup**
Transforms provided in this module are cross-language transforms
implemented in the Beam Java SDK. During the pipeline construction, Python SDK
will connect to a Java expansion service to expand these transforms.
To facilitate this, a small amount of setup is needed before using these
transforms in a Beam Python pipeline.
There are several ways to setup cross-language Snowflake transforms.
* Option 1: use the default expansion service
* Option 2: specify a custom expansion service
See below for details regarding each of these options.
*Option 1: Use the default expansion service*
This is the recommended and easiest setup option for using Python Snowflake
transforms.This option requires following pre-requisites
before running the Beam pipeline.
* Install Java runtime in the computer from where the pipeline is constructed
and make sure that 'java' command is available.
In this option, Python SDK will either download (for released Beam version) or
build (when running from a Beam Git clone) a expansion service jar and use
that to expand transforms. Currently Snowflake transforms use the
'beam-sdks-java-io-expansion-service' jar for this purpose.
*Option 2: specify a custom expansion service*
In this option, you startup your own expansion service and provide that as
a parameter when using the transforms provided in this module.
This option requires following pre-requisites before running the Beam
pipeline.
* Startup your own expansion service.
* Update your pipeline to provide the expansion service address when
initiating Snowflake transforms provided in this module.
Flink Users can use the built-in Expansion Service of the Flink Runner's
Job Server. If you start Flink's Job Server, the expansion service will be
started on port 8097. For a different address, please set the
expansion_service parameter.
**More information**
For more information regarding cross-language transforms see:
- https://beam.apache.org/roadmap/portability/
For more information specific to Flink runner see:
- https://beam.apache.org/documentation/runners/flink/
Run Code Online (Sandbox Code Playgroud)
Snowflake(作为大多数便携式 IO)有自己的 java 扩展服务,当您不指定自己的自定义扩展服务时,应自动下载该服务。我不认为应该需要它,但我提到它只是为了安全起见。您可以下载 jar 并启动它,java -jar <PATH_TO_JAR> <PORT>
然后将其作为 .ReadFromSnowflake 传递给 snowflake.ReadFromSnowflake expansion_service='localhost:<PORT>'
。2.24版本链接:https : //mvnrepository.com/artifact/org.apache.beam/beam-sdks-java-io-snowflake-expansion-service/2.24.0
请注意,它仍然是实验性的,请随时报告 Beam Jira 上的问题。