在特殊图表中查找局部最小值

maf*_*afu 5 algorithm graph

手头的问题看起来很容易,但到目前为止我找不到一个简单的解决方案.

我有一个直方图描述了浮点数组的值分布,大致如下所示:

在此输入图像描述

正如你所看到的,有一个局部最大值接近0,它一直下降到局部最小值,然后迅速上升到一个平台,最后下降到0.我想检测局部最小值.

在实践中,直方图不是那么平滑:

在此输入图像描述

有很多尖峰,局部最小值可能会拉伸和不均匀.我不知道如何解决这个问题.

领域知识很少.第一个最大值甚至可能高于第二个最大值.任何方向都可能出现尖峰,值可能低至0.

这是从8个不同的运行中获取的真实样本.它缩放到0 - 10,以便更容易理解.

0: 22%  12% 19% 17% 6%  5%  6%  5%    
1: 3%   2%  1%  1%  4%  1%  4%  1%    
2: 6%   2%  13% 5%  0%  2%  0%  2%   
3: 62%  62% 52% 42% 2%  5%  2%  5%  
4: 4%   19% 12% 28% 10% 13% 10% 13%  
5: 0%   0%      3%  29% 30% 29% 30%
6:                  37% 31% 37% 30%
7:                  1%  7%  1%  7%
8:                  6%  1%  6%  1%
9:
10:
Run Code Online (Sandbox Code Playgroud)

四舍五入的值.缺少值表示不会出现任何值.

第一行的解释:

0: 22%   the initial max
1: 3%    local min
2: 6%    still min
3: 62%   plateau max
4: 4%    second min
5: 0%    0
6:   no more values 
7:      
8:      
9:
10:
Run Code Online (Sandbox Code Playgroud)

作为参考,列出了相同的数据,这个时间缩放到0-100(在90-100范围内根本没有值).我搞砸了格式化,但它应该给出一个粗略的想法.

0:  0%   0%   0%   1%   0%   0%   0%   0%
1:  0%   1%   1%   3%   0%   0%   0%   0%
2:  1%   2%   1%   3%   0%   0%   0%   0%
3:  4%   2%   3%   3%   0%   1%   0%   1%
4:  6%   1%   3%   2%   0%   0%   0%   0%
5:  2%   0%   3%   1%   0%   0%   0%   0%
6:  1%   0%   2%   0%   0%   0%   0%   0%
7:  1%   0%   1%   0%   0%   0%   0%   0%
8:  1%   0%   1%   0%   0%   0%   0%   0%
9:  1%   0%   1%   0%   1%   0%   1%   0%
10: 1%   0%   0%   0%   1%   0%   1%   0%
11: 0%   0%   0%   0%   0%   0%   0%   0%
12: 0%   0%   0%   0%   0%   0%   0%   0%
13: 0%   0%   0%   0%   0%   0%   0%   0%
14: 0%   0%   0%   0%   0%   0%   0%   0%
15: 0%   0%   0%   0%   0%   0%   0%   0%
16: 0%   0%   0%   0%   0%   0%   0%   0%
17: 0%   0%   0%   0%   0%   0%   0%   0%
18: 0%   0%   0%   0%   0%   0%   0%   0%
19: 0%   0%   0%   0%   0%   0%   0%   0%
20: 0%   0%   0%   0%   0%   0%   0%   0%
21: 0%   0%   0%   0%   0%   0%   0%   0%
22: 0%   0%   0%   0%   0%   0%   0%   0%
23: 0%   0%   0%   0%   0%   0%   0%   0%
24: 0%   0%   1%   0%   0%   0%   0%   0%
25: 0%   0%   1%   0%   0%   0%   0%   0%
26: 0%   0%   1%   0%   0%   0%   0%   0%
27: 0%   0%   1%   0%   0%   0%   0%   0%
28: 1%   0%   2%   1%   0%   0%   0%   0%
29: 3%   0%   2%   2%   0%   0%   0%   0%
30: 7%   1%   3%   2%   0%   0%   0%   0%
31: 10%  2%   4%   3%   0%   0%   0%   0%
32: 10%  3%   4%   4%   0%   0%   0%   0%
33: 6%   6%   5%   5%   0%   0%   0%   0%
34: 5%   5%   4%   4%   0%   0%   0%   0%
35: 5%   8%   6%   3%   0%   0%   0%   0%
36: 5%   10%  6%   4%   0%   0%   0%   0%
37: 5%   9%   5%   3%   0%   0%   0%   0%
38: 3%   8%   5%   5%   0%   0%   0%   0%
39: 2%   5%   5%   5%   0%   0%   0%   0%
40: 1%   4%   4%   5%   0%   1%   0%   1%
41: 1%   3%   2%   5%   0%   1%   0%   1%
42: 0%   1%   1%   4%   0%   0%   0%   0%
43: 0%   2%   0%   4%   1%   1%   1%   1%
44: 0%   1%   0%   3%   1%   1%   1%   1%
45: 0%   1%   0%   1%   0%   1%   0%   1%
46: 0%   1%   0%   1%   1%   1%   1%   1%
47: 0%   1%   0%   0%   1%   1%   1%   1%
48: 0%   1%   0%   0%   1%   1%   1%   1%
50: 0%   0%   0%   1%   1%   1%   1%   1%
50:      0%        1%   1%   1%   1%   1%
51:      0%        0%   2%   1%   2%   1%
52:      0%        1%   2%   1%   2%   1%
53:      0%        0%   4%   2%   4%   2%
54:                0%   2%   2%   2%   2%
55:                0%   2%   2%   2%   2%
56:                0%   2%   3%   2%   3%
57:                0%   2%   4%   2%   4%
58:                     4%   6%   4%   6%
59:                     3%   3%   3%   3%
60:                     5%   5%   5%   5%
61:                     5%   7%   5%   7%
62:                     3%   5%   3%   5%
63:                     4%   3%   4%   3%
64:                     5%   2%   5%   2%
65:                     3%   2%   2%   2%
66:                     5%   1%   5%   1%
67:                     1%   0%   1%   0%
68:                     1%   0%   1%   0%
69:                     0%   1%   0%   1%
70:                     0%   0%   0%   0%
71:                     0%   0%   0%   0%
72:                     0%   0%   0%   0%
73:                     0%   1%   0%   1%
74:                     0%   0%   0%   0%
75:                     0%   0%   0%   0%
76:                     0%   1%   0%   1%
77:                     0%   0%   0%   0%
78:                     0%   0%   0%   0%
79:                     0%   0%   0%   0%
80:                     0%   0%   0%   1%
81:                     0%   0%   0%   0%
82:                     0%   0%   0%   0%
83:                     0%   0%   0%   0%
84:                     0%   0%   0%   0%
85:                     1%        1%
86:                     0%        0%
87:                     1%        1%
88:                     1%        1%
89:                     0%        0%
Run Code Online (Sandbox Code Playgroud)

Jim*_*lay 5

你的"真实"直方图是低频率.你的噪音很高.使用适当的带宽滤波器对数据进行低通滤波将消除大部分噪声.


ami*_*mit 2

一种可能的启发式:使用样条近似来平滑直方图,使其类似于多项式,然后寻找局部最小值。
请注意,这只是一个启发式解决方案,可能会失败......但我认为将为大多数情况提供一个很好的解决方案。