NPE*_*NPE 11 python performance numpy dot-product
我有一个numpy
脚本,它在以下代码中占用了大约50%的运行时间:
s = numpy.dot(v1, v1)
哪里
v1 = v[1:]
和v
是一个4000元件1D ndarray
的float64
存储在连续的存储器(v.strides
是(8,)
).
有什么建议加快这个?
编辑这是在Intel硬件上.这是我的输出numpy.show_config()
:
atlas_threads_info:
libraries = ['lapack', 'ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
language = f77
include_dirs = ['/usr/local/atlas-3.9.16/include']
blas_opt_info:
libraries = ['ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
define_macros = [('ATLAS_INFO', '"\\"3.9.16\\""')]
language = c
include_dirs = ['/usr/local/atlas-3.9.16/include']
atlas_blas_threads_info:
libraries = ['ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
language = c
include_dirs = ['/usr/local/atlas-3.9.16/include']
lapack_opt_info:
libraries = ['lapack', 'ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
define_macros = [('ATLAS_INFO', '"\\"3.9.16\\""')]
language = f77
include_dirs = ['/usr/local/atlas-3.9.16/include']
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
Run Code Online (Sandbox Code Playgroud)
也许罪魁祸首是复制传递给dot的数组.
正如斯文所说,点积依赖于BLAS操作.这些操作需要以连续的C顺序存储的数组.如果传递给dot的两个数组都在C_CONTIGUOUS中,那么你应该看到更好的性能.
当然,如果你的两个数组传递给点确实1D(8),那么你应该会看到两个的C_CONTIGUOUS并设置为True F_CONTIGUOUS标志; 但如果它们是(1,8),那么你可以看到混合顺序.
>>> w = NP.random.randint(0, 10, 100).reshape(100, 1)
>>> w.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
Run Code Online (Sandbox Code Playgroud)
另一种方法:使用BLAS中的_GEMM,它通过模块scipy.linalg.fblas公开.(两个数组A和B显然是Fortran顺序,因为使用了fblas.)
from scipy.linalg import fblas as FB
X = FB.dgemm(alpha=1., a=A, b=B, trans_b=True)
Run Code Online (Sandbox Code Playgroud)
你的阵列不是很大,所以ATLAS可能做得不多.您对以下Fortran计划的时间安排是什么?假设ATLAS没有做太多,这应该让你了解如果没有任何python开销,dot()的速度有多快.使用gfortran -O3,我获得了5 +/- 0.5 us的速度.
program test
real*8 :: x(4000), start, finish, s
integer :: i, j
integer,parameter :: jmax = 100000
x(:) = 4.65
s = 0.
call cpu_time(start)
do j=1,jmax
s = s + dot_product(x, x)
enddo
call cpu_time(finish)
print *, (finish-start)/jmax * 1.e6, s
end program test
Run Code Online (Sandbox Code Playgroud)