ga9*_*dil 5 python pipeline scikit-learn ensemble-learning keras
我想VotingClassifier用多个不同的模型(决策树、SVC 和 Keras 网络)构建一个 sklearn集成。它们都需要不同类型的数据预处理,这就是我为它们每个都制作了管道的原因。
# Define pipelines
# DTC pipeline
featuriser = Featuriser()
dtc = DecisionTreeClassifier()
dtc_pipe = Pipeline([('featuriser',featuriser),('dtc',dtc)])
# SVC pipeline
scaler = TimeSeriesScalerMeanVariance(kind='constant')
flattener = Flattener()
svc = SVC(C = 100, gamma = 0.001, kernel='rbf')
svc_pipe = Pipeline([('scaler', scaler),('flattener', flattener), ('svc', svc)])
# Keras pipeline
cnn = KerasClassifier(build_fn=get_model())
cnn_pipe = Pipeline([('scaler',scaler),('cnn',cnn)])
# Make an ensemble
ensemble = VotingClassifier(estimators=[('dtc', dtc_pipe),
('svc', svc_pipe),
('cnn', cnn_pipe)],
voting='hard')
Run Code Online (Sandbox Code Playgroud)
的Featuriser,TimeSeriesScalerMeanVariance而Flattener类是一些定制变压器,所有雇用fit,transform和fit_transform方法。
当我尝试ensemble.fit(X, y)适应整个合奏时,我收到错误消息:
ValueError:估计器列表应该是一个分类器。
我可以理解,因为单个估计器不是专门的分类器,而是管道。有没有办法让它继续工作?
问题出在KerasClassifier. 它不提供_estimator_type已签入的_validate_estimator。
这不是使用管道的问题。管道将此信息作为属性提供。见这里。
因此,快速修复是设置_estimator_type='classifier'。
一个可重现的例子:
# Define pipelines
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler, Normalizer
from sklearn.ensemble import VotingClassifier
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.datasets import make_classification
from keras.layers import Dense
from keras.models import Sequential
X, y = make_classification()
# DTC pipeline
featuriser = MinMaxScaler()
dtc = DecisionTreeClassifier()
dtc_pipe = Pipeline([('featuriser', featuriser), ('dtc', dtc)])
# SVC pipeline
scaler = Normalizer()
svc = SVC(C=100, gamma=0.001, kernel='rbf')
svc_pipe = Pipeline(
[('scaler', scaler), ('svc', svc)])
# Keras pipeline
def get_model():
# create model
model = Sequential()
model.add(Dense(10, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
cnn = KerasClassifier(build_fn=get_model)
cnn._estimator_type = "classifier"
cnn_pipe = Pipeline([('scaler', scaler), ('cnn', cnn)])
# Make an ensemble
ensemble = VotingClassifier(estimators=[('dtc', dtc_pipe),
('svc', svc_pipe),
('cnn', cnn_pipe)],
voting='hard')
ensemble.fit(X, y)
Run Code Online (Sandbox Code Playgroud)