提高 PostgresSQL 聚合查询性能

Ank*_*jan 6 sql postgresql indexing query-performance postgresql-performance

我正在从 Postgres 表中聚合数据,查询大约需要 2 秒,我想将其减少到不到一秒。

请在下面找到执行细节:


询问

select
    a.search_keyword,
    hll_cardinality( hll_union_agg(a.users) ):: int as user_count,
    hll_cardinality( hll_union_agg(a.sessions) ):: int as session_count,
    sum(a.total) as keyword_count
from
    rollup_day a
where
    a.created_date between '2018-09-01' and '2019-09-30'
    and a.tenant_id = '62850a62-19ac-477d-9cd7-837f3d716885'
group by
    a.search_keyword
order by
    session_count desc
limit 100;
Run Code Online (Sandbox Code Playgroud)

表元数据

  1. 总行数 - 506527
  2. 列上的复合索引:tenant_id 和 created_date

在此处输入图片说明


查询计划

Custom Scan (cost=0.00..0.00 rows=0 width=0) (actual time=1722.685..1722.694 rows=100 loops=1)
  Task Count: 1
  Tasks Shown: All
  ->  Task
        Node: host=localhost port=5454 dbname=postgres
        ->  Limit  (cost=64250.24..64250.49 rows=100 width=42) (actual time=1783.087..1783.106 rows=100 loops=1)
              ->  Sort  (cost=64250.24..64558.81 rows=123430 width=42) (actual time=1783.085..1783.093 rows=100 loops=1)
                    Sort Key: ((hll_cardinality(hll_union_agg(sessions)))::integer) DESC
                    Sort Method: top-N heapsort  Memory: 33kB
                    ->  GroupAggregate  (cost=52933.89..59532.83 rows=123430 width=42) (actual time=905.502..1724.363 rows=212633 loops=1)
                          Group Key: search_keyword
                          ->  Sort  (cost=52933.89..53636.53 rows=281055 width=54) (actual time=905.483..1351.212 rows=280981 loops=1)
                                Sort Key: search_keyword
                                Sort Method: external merge  Disk: 18496kB
                                ->  Seq Scan on rollup_day a  (cost=0.00..17890.22 rows=281055 width=54) (actual time=29.720..112.161 rows=280981 loops=1)
                                      Filter: ((created_date >= '2018-09-01'::date) AND (created_date <= '2019-09-30'::date) AND (tenant_id = '62850a62-19ac-477d-9cd7-837f3d716885'::uuid))
                                      Rows Removed by Filter: 225546
            Planning Time: 0.129 ms
            Execution Time: 1786.222 ms
Planning Time: 0.103 ms
Execution Time: 1722.718 ms
Run Code Online (Sandbox Code Playgroud)

我试过的

  1. 我已经尝试过对tenant_id 和created_date使用索引,但由于数据很大,所以它总是进行序列扫描而不是过滤器的索引扫描。我读过它并发现,如果返回的数据大于总行数的5-10%,Postgres 查询引擎会切换到序列扫描。请点击链接以获取更多参考
  2. 我已经将work_mem增加到100MB,但它只是稍微提高了性能。

任何帮助将非常感激。


更新

work_mem设置为 100MB后的查询计划

Custom Scan (cost=0.00..0.00 rows=0 width=0) (actual time=1375.926..1375.935 rows=100 loops=1)
  Task Count: 1
  Tasks Shown: All
  ->  Task
        Node: host=localhost port=5454 dbname=postgres
        ->  Limit  (cost=48348.85..48349.10 rows=100 width=42) (actual time=1307.072..1307.093 rows=100 loops=1)
              ->  Sort  (cost=48348.85..48633.55 rows=113880 width=42) (actual time=1307.071..1307.080 rows=100 loops=1)
                    Sort Key: (sum(total)) DESC
                    Sort Method: top-N heapsort  Memory: 35kB
                    ->  GroupAggregate  (cost=38285.79..43996.44 rows=113880 width=42) (actual time=941.504..1261.177 rows=172945 loops=1)
                          Group Key: search_keyword
                          ->  Sort  (cost=38285.79..38858.52 rows=229092 width=54) (actual time=941.484..963.061 rows=227261 loops=1)
                                Sort Key: search_keyword
                                Sort Method: quicksort  Memory: 32982kB
                                ->  Seq Scan on rollup_day_104290 a  (cost=0.00..17890.22 rows=229092 width=54) (actual time=38.803..104.350 rows=227261 loops=1)
                                      Filter: ((created_date >= '2019-01-01'::date) AND (created_date <= '2019-12-30'::date) AND (tenant_id = '62850a62-19ac-477d-9cd7-837f3d716885'::uuid))
                                      Rows Removed by Filter: 279266
            Planning Time: 0.131 ms
            Execution Time: 1308.814 ms
Planning Time: 0.112 ms
Execution Time: 1375.961 ms
Run Code Online (Sandbox Code Playgroud)

更新 2

created_date创建索引并将work_mem 增加到 120MB 后

create index date_idx on rollup_day(created_date);

总行数为:12,124,608

查询计划是:

Custom Scan (cost=0.00..0.00 rows=0 width=0) (actual time=2635.530..2635.540 rows=100 loops=1)
  Task Count: 1
  Tasks Shown: All
  ->  Task
        Node: host=localhost port=9702 dbname=postgres
        ->  Limit  (cost=73545.19..73545.44 rows=100 width=51) (actual time=2755.849..2755.873 rows=100 loops=1)
              ->  Sort  (cost=73545.19..73911.25 rows=146424 width=51) (actual time=2755.847..2755.858 rows=100 loops=1)
                    Sort Key: (sum(total)) DESC
                    Sort Method: top-N heapsort  Memory: 35kB
                    ->  GroupAggregate  (cost=59173.97..67948.97 rows=146424 width=51) (actual time=2014.260..2670.732 rows=296537 loops=1)
                          Group Key: search_keyword
                          ->  Sort  (cost=59173.97..60196.85 rows=409152 width=55) (actual time=2013.885..2064.775 rows=410618 loops=1)
                                Sort Key: search_keyword
                                Sort Method: quicksort  Memory: 61381kB
                                ->  Index Scan using date_idx_102913 on rollup_day_102913 a  (cost=0.42..21036.35 rows=409152 width=55) (actual time=0.026..183.370 rows=410618 loops=1)
                                      Index Cond: ((created_date >= '2018-01-01'::date) AND (created_date <= '2018-12-31'::date))
                                      Filter: (tenant_id = '12850a62-19ac-477d-9cd7-837f3d716885'::uuid)
            Planning Time: 0.135 ms
            Execution Time: 2760.667 ms
Planning Time: 0.090 ms
Execution Time: 2635.568 ms
Run Code Online (Sandbox Code Playgroud)

Lau*_*lbe 5

您应该尝试更高的设置,work_mem直到获得内存排序。当然,只有当您的机器有足够的内存时,您才能对内存大方。

如果您使用物化视图或第二个表和原始表上的触发器来存储预先聚合的数据,那么将使您的查询更快的方法是,保持另一个表中的总和更新。我不知道您的数据是否可行,因为我不知道是什么hll_cardinalityhll_union_agg是什么。