Nic*_*che 6 haskell existential-type ghc functional-logic-progr
我正在尝试使用 GHC 8.6.5 版在 Haskell 中对以下逻辑含义进行建模:
(∀ a. ¬ Φ(a)) → ¬ (∃ a: Φ(a))
我使用的定义如下:
{-# LANGUAGE RankNTypes, GADTs #-}
import Data.Void
-- Existential quantification via GADT
data Ex phi where
Ex :: forall a phi. phi a -> Ex phi
-- Universal quantification, wrapped into a newtype
newtype All phi = All (forall a. phi a)
-- Negation, as a function to Void
type Not a = a -> Void
-- Negation of a predicate, wrapped into a newtype
newtype NotPred phi a = NP (phi a -> Void)
-- The following definition does not work:
theorem :: All (NotPred phi) -> Not (Ex phi)
theorem (All (NP f)) (Ex a) = f a
Run Code Online (Sandbox Code Playgroud)
在这里,GHC 拒绝执行theorem并显示以下错误消息:
* Couldn't match type `a' with `a0'
`a' is a rigid type variable bound by
a pattern with constructor:
Ex :: forall a (phi :: * -> *). phi a -> Ex phi,
in an equation for `theorem'
at question.hs:20:23-26
* In the first argument of `f', namely `a'
In the expression: f a
In an equation for `theorem': theorem (All (NP f)) (Ex a) = f a
* Relevant bindings include
a :: phi a (bound at question.hs:20:26)
f :: phi a0 -> Void (bound at question.hs:20:18)
Run Code Online (Sandbox Code Playgroud)
我真的不明白为什么 GHC 不应该能够匹配这两种类型。以下解决方法编译:
theorem = flip theorem' where
theorem' (Ex a) (All (NP f)) = f a
Run Code Online (Sandbox Code Playgroud)
对我来说, 的两种实现theorem是等效的。为什么GHC只接受第二个?
当您将模式All prf与 type 的值进行匹配时All phi,prf将提取为 type 的多态实体forall a. phi a。在这种情况下,您将获得一个no :: forall a. NotPred phi a. 但是,您不能对这种类型的对象执行模式匹配。毕竟,它是一个从类型到值的函数。您需要将其应用于特定类型(称为_a),然后您将获得no @_a :: NotPred phi _a,现在可以匹配以提取f :: phi _a -> Void. 如果你扩展你的定义......
{-# LANGUAGE ScopedTypeVariables #-}
-- type signature with forall needed to bind the variable phi
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem prf wit = case prf of
All no -> case no @_a of -- no :: forall a. NotPred phi a
NP f -> case wit of -- f :: phi _a -> Void
Ex (x :: phi b) -> f x -- matching against Ex extracts a type variable, call it b, and then x :: phi b
Run Code Online (Sandbox Code Playgroud)
所以问题是,应该使用什么类型_a?好了,我们正在申请f :: phi _a -> Void以x :: b(其中b存储的类型变量wit),所以我们应该设置_a := b。但这是一个范围界定违规。b只能通过匹配来提取Ex,这发生在我们特化no和提取之后f,所以f的类型不能依赖于b。因此,在_a不让存在变量脱离其作用域的情况下,没有任何选择可以使这项工作正常进行。错误。
正如您所发现的,解决方案是Ex在将该类型应用于no.
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem prf wit = case wit of
Ex (x :: phi b) -> case prf of
All no -> case no @b of
NP f -> f x
-- or
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem (All no) (Ex x) | NP f <- no = f x
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
105 次 |
| 最近记录: |