我有一个数据框和一个字典:
df =
VARIABLE VALUE
A 3
A 4
A 60
A 5
B 1
B 2
B 3
B 100
C 0
C 1
Run Code Online (Sandbox Code Playgroud)
df =
VARIABLE VALUE
A 3
A 4
A 60
A 5
B 1
B 2
B 3
B 100
C 0
C 1
Run Code Online (Sandbox Code Playgroud)
我想根据字典中接受的范围清理 VALUE 列。
df =
VARIABLE VALUE
A 3
A 4
A NaN
A 5
B 1
B 2
B 3
B NaN
C 0
C 1
Run Code Online (Sandbox Code Playgroud)
我试过:使用,map()但我似乎无法找到通过 VARIABLE 组使用它的方法。apply()会起作用,但是,我认为apply()对我的数据帧(> 10M 行)的运行速度非常慢。先谢谢了。
用于Series.map将您的字典映射到每个VARIABLE. 然后我们Series.between用来检查每个VALUE是否在范围之间。
最后我们Series.where用来将False值转换为NaN
ranges = df['VARIABLE'].map(accepted_ranges)
df['VALUE'] = df['VALUE'].where(df['VALUE'].between(ranges.str[0], ranges.str[1]))
VARIABLE VALUE
0 A 3.0
1 A 4.0
2 A NaN
3 A 5.0
4 B 1.0
5 B 2.0
6 B 3.0
7 B NaN
8 C 0.0
9 C 1.0
Run Code Online (Sandbox Code Playgroud)
该.str访问可以说是相当缓慢的,大多是在后台“多圈”的实现。特别是因为您的数据中有大约 10m 行,这可能会导致代码效率降低。我们可以通过将你的分成accepted_ranges两个字典来解决这个问题,从而创建两个向量Series.map:
accepted_ranges1 = {k: v[0] for k, v in accepted_ranges.items()}
accepted_ranges2 = {k: v[1] for k, v in accepted_ranges.items()}
ranges1 = df['VARIABLE'].map(accepted_ranges1)
ranges2 = df['VARIABLE'].map(accepted_ranges2)
m1 = df['VALUE'].between(ranges1, ranges2)
m2 = ~df['VARIABLE'].isin(list(accepted_ranges.keys()))
df['VALUE'] = df['VALUE'].where(m1|m2)
Run Code Online (Sandbox Code Playgroud)
# create example dataframe of 10m rows
dfbig = pd.concat([df]*1000000, ignore_index=True)
dfbig.shape
# (10000000, 2)
Run Code Online (Sandbox Code Playgroud)
# Erfan 1
%%timeit
ranges = dfbig['VARIABLE'].map(accepted_ranges)
dfbig['VALUE'].where(dfbig['VALUE'].between(ranges.str[0], ranges.str[1]))
10 s ± 466 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)
# Erfan 2
%%timeit
accepted_ranges1 = {k: v[0] for k, v in accepted_ranges.items()}
accepted_ranges2 = {k: v[1] for k, v in accepted_ranges.items()}
ranges1 = dfbig['VARIABLE'].map(accepted_ranges1)
ranges2 = dfbig['VARIABLE'].map(accepted_ranges2)
dfbig['VALUE'].where(dfbig['VALUE'].between(ranges1, ranges2))
1.03 s ± 22.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)
# piRSquared
%%timeit
mask = [
accepted_ranges[k][0] <= v <= accepted_ranges[k][1]
for k, v in zip(dfbig.VARIABLE, dfbig.VALUE)
]
dfbig.VALUE.where(mask)
3.11 s ± 106 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)
mask = [
accepted_ranges[k][0] <= v <= accepted_ranges[k][1]
for k, v in zip(df.VARIABLE, df.VALUE)
]
df[mask]
VARIABLE VALUE
0 A 3
1 A 4
3 A 5
4 B 1
5 B 2
6 B 3
8 C 0
9 C 1
Run Code Online (Sandbox Code Playgroud)
或者
df.assign(VALUE=df.VALUE.where(mask))
VARIABLE VALUE
0 A 3.0
1 A 4.0
2 A NaN
3 A 5.0
4 B 1.0
5 B 2.0
6 B 3.0
7 B NaN
8 C 0.0
9 C 1.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
172 次 |
| 最近记录: |