按值范围字典过滤数字列

Kai*_*sar 5 python pandas

我有一个数据框和一个字典:

df = 

VARIABLE VALUE
A        3
A        4
A        60
A        5
B        1
B        2
B        3
B        100
C        0
C        1
Run Code Online (Sandbox Code Playgroud)
df = 

VARIABLE VALUE
A        3
A        4
A        60
A        5
B        1
B        2
B        3
B        100
C        0
C        1
Run Code Online (Sandbox Code Playgroud)

我想根据字典中接受的范围清理 VALUE 列。

df = 

VARIABLE VALUE
A        3
A        4
A        NaN
A        5
B        1
B        2
B        3
B        NaN
C        0
C        1

Run Code Online (Sandbox Code Playgroud)

我试过:使用,map()但我似乎无法找到通过 VARIABLE 组使用它的方法。apply()会起作用,但是,我认为apply()对我的数据帧(> 10M 行)的运行速度非常慢。先谢谢了。

Erf*_*fan 6

用于Series.map将您的字典映射到每个VARIABLE. 然后我们Series.between用来检查每个VALUE是否在范围之间。

最后我们Series.where用来将False值转换为NaN

ranges = df['VARIABLE'].map(accepted_ranges)
df['VALUE'] = df['VALUE'].where(df['VALUE'].between(ranges.str[0], ranges.str[1]))

  VARIABLE  VALUE
0        A    3.0
1        A    4.0
2        A    NaN
3        A    5.0
4        B    1.0
5        B    2.0
6        B    3.0
7        B    NaN
8        C    0.0
9        C    1.0
Run Code Online (Sandbox Code Playgroud)

速度更快!

.str访问可以说是相当缓慢的,大多是在后台“多圈”的实现。特别是因为您的数据中有大约 10m 行,这可能会导致代码效率降低。我们可以通过将你的分成accepted_ranges两个字典来解决这个问题,从而创建两个向量Series.map

accepted_ranges1 = {k: v[0] for k, v in accepted_ranges.items()}
accepted_ranges2 = {k: v[1] for k, v in accepted_ranges.items()}

ranges1 = df['VARIABLE'].map(accepted_ranges1)
ranges2 = df['VARIABLE'].map(accepted_ranges2)

m1 = df['VALUE'].between(ranges1, ranges2)
m2 = ~df['VARIABLE'].isin(list(accepted_ranges.keys()))

df['VALUE'] = df['VALUE'].where(m1|m2)
Run Code Online (Sandbox Code Playgroud)

速度对比

# create example dataframe of 10m rows
dfbig = pd.concat([df]*1000000, ignore_index=True)
dfbig.shape

# (10000000, 2)
Run Code Online (Sandbox Code Playgroud)
# Erfan 1
%%timeit
ranges = dfbig['VARIABLE'].map(accepted_ranges)
dfbig['VALUE'].where(dfbig['VALUE'].between(ranges.str[0], ranges.str[1]))

10 s ± 466 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)
# Erfan 2
%%timeit
accepted_ranges1 = {k: v[0] for k, v in accepted_ranges.items()}
accepted_ranges2 = {k: v[1] for k, v in accepted_ranges.items()}

ranges1 = dfbig['VARIABLE'].map(accepted_ranges1)
ranges2 = dfbig['VARIABLE'].map(accepted_ranges2)

dfbig['VALUE'].where(dfbig['VALUE'].between(ranges1, ranges2))

1.03 s ± 22.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)
# piRSquared
%%timeit
mask = [
    accepted_ranges[k][0] <= v <= accepted_ranges[k][1]
    for k, v in zip(dfbig.VARIABLE, dfbig.VALUE)
]

dfbig.VALUE.where(mask)

3.11 s ± 106 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)


piR*_*red 6

布尔掩码

mask = [
    accepted_ranges[k][0] <= v <= accepted_ranges[k][1]
    for k, v in zip(df.VARIABLE, df.VALUE)
]

df[mask]

  VARIABLE  VALUE
0        A      3
1        A      4
3        A      5
4        B      1
5        B      2
6        B      3
8        C      0
9        C      1
Run Code Online (Sandbox Code Playgroud)

或者

df.assign(VALUE=df.VALUE.where(mask))

  VARIABLE  VALUE
0        A    3.0
1        A    4.0
2        A    NaN
3        A    5.0
4        B    1.0
5        B    2.0
6        B    3.0
7        B    NaN
8        C    0.0
9        C    1.0
Run Code Online (Sandbox Code Playgroud)