使用量化约束导出 Ord(forall a.Ord a => Ord (fa))

Wil*_*ack 10 haskell derived-class typeclass quantified-constraints

有了量化的约束,我可以Eq (A f)很好地推导出来吗?但是,当我尝试推导 Ord (A f) 时,它失败了。当约束类具有超类时,我不明白如何使用量化约束。我如何派生Ord (A f)和其他具有超类的类?

> newtype A f = A (f Int)
> deriving instance (forall a. Eq a => Eq (f a)) => Eq (A f)
> deriving instance (forall a. Ord a => Ord (f a)) => Ord (A f)
<interactive>:3:1: error:
    • Could not deduce (Ord a)
        arising from the superclasses of an instance declaration
      from the context: forall a. Ord a => Ord (f a)
        bound by the instance declaration at <interactive>:3:1-61
      or from: Eq a bound by a quantified context at <interactive>:1:1
      Possible fix: add (Ord a) to the context of a quantified context
    • In the instance declaration for 'Ord (A f)'
Run Code Online (Sandbox Code Playgroud)

附注。我还检查了ghc 提案 0109-quantified-constraints。使用 ghc 8.6.5

Li-*_*Xia 8

问题是它Eq是 的超类Ord,并且约束(forall a. Ord a => Ord (f a))不包含Eq (A f)声明Ord (A f)实例所需的超类约束。

  • 我们有 (forall a. Ord a => Ord (f a))

  • 我们需要Eq (A f),即 ,(forall a. Eq a => Eq (f a))这不是我们所拥有的。

解决方案:添加(forall a. Eq a => Eq (f a))Ord实例中。

(我实际上不明白 GHC 给出的错误消息与问题有何关联。)

{-# LANGUAGE QuantifiedConstraints, StandaloneDeriving, UndecidableInstances, FlexibleContexts #-}

newtype A f = A (f Int)
deriving instance (forall a. Eq a => Eq (f a)) => Eq (A f)
deriving instance (forall a. Eq a => Eq (f a), forall a. Ord a => Ord (f a)) => Ord (A f)
Run Code Online (Sandbox Code Playgroud)

或者更整洁一点:

{-# LANGUAGE ConstraintKinds, RankNTypes, KindSignatures, QuantifiedConstraints, StandaloneDeriving, UndecidableInstances, FlexibleContexts #-}

import Data.Kind (Constraint)

type Eq1 f = (forall a. Eq a => Eq (f a) :: Constraint)
type Ord1 f = (forall a. Ord a => Ord (f a) :: Constraint)  -- I also wanted to put Eq1 in here but was getting some impredicativity errors...

-----

newtype A f = A (f Int)
deriving instance Eq1 f => Eq (A f)
deriving instance (Eq1 f, Ord1 f) => Ord (A f)
Run Code Online (Sandbox Code Playgroud)