Nyx*_*nyx 14 python pandas parquet fastparquet pyarrow
使用以下代码pyarrow将pandas.DataFrame包含Player对象转换为 apyarrow.Table
import pandas as pd
import pyarrow as pa
class Player:
def __init__(self, name, age, gender):
self.name = name
self.age = age
self.gender = gender
def __repr__(self):
return f'<{self.name} ({self.age})>'
data = [
Player('Jack', 21, 'm'),
Player('Ryan', 18, 'm'),
Player('Jane', 35, 'f'),
]
df = pd.DataFrame(data, columns=['player'])
print(pa.Table.from_pandas(df))
Run Code Online (Sandbox Code Playgroud)
我们得到错误:
pyarrow.lib.ArrowInvalid: ('Could not convert <Jack (21)> with type Player: did not recognize Python value type when inferring an Arrow data type', 'Conversion failed for column 0 with type object')
Run Code Online (Sandbox Code Playgroud)
使用时遇到同样的错误
df.to_parquet('players.pq')
Run Code Online (Sandbox Code Playgroud)
是否可以pyarrow回退到使用序列化这些 Python 对象pickle?或者有更好的解决方案吗?在pyarrow.Table使用最终会被写入到磁盘Parquet.write_table()。
pandas.DataFrame.to_parquet()不支持多索引,因此pq.write_table(pa.Table.from_dataframe(pandas.DataFrame))首选使用解决方案。谢谢!
我的建议是将数据插入到已经序列化的 DataFrame 中。
通过装饰器将 Player 类定义为数据类,并让序列化在本机为您完成(到 JSON)。
import pandas as pd
from dataclasses import dataclass
@dataclass
class PlayerV2:
name:str
age:int
gender:str
def __repr__(self):
return f'<{self.name} ({self.age})>'
dataV2 = [
PlayerV2(name='Jack', age=21, gender='m'),
PlayerV2(name='Ryan', age=18, gender='m'),
PlayerV2(name='Jane', age=35, gender='f'),
]
# The serialization is done natively to JSON
df_v2 = pd.DataFrame(data, columns=['player'])
print(df_v2)
# Can still get the objects's attributes by deserializeing the record
json.loads(df_v2["player"][0])['name']
Run Code Online (Sandbox Code Playgroud)
在 Player 类中定义序列化函数,并在创建 Dataframe 之前序列化每个实例。
import pandas as pd
import json
class Player:
def __init__(self, name, age, gender):
self.name = name
self.age = age
self.gender = gender
def __repr__(self):
return f'<{self.name} ({self.age})>'
# The serialization function for JSON, if for some reason you really need pickle you can use it instead
def toJSON(self):
return json.dumps(self, default=lambda o: o.__dict__)
# Serialize the objects before inserting it into the DataFrame
data = [
Player('Jack', 21, 'm').toJSON(),
Player('Ryan', 18, 'm').toJSON(),
Player('Jane', 35, 'f').toJSON(),
]
df = pd.DataFrame(data, columns=['player'])
# You can see all the data inserted as a serialized json into the column player
print(df)
# Can still get the objects's attributes by deserializeing the record
json.loads(df["player"][0])['name']
Run Code Online (Sandbox Code Playgroud)
根据我的理解,由于repr原因,“类型”存在问题 尝试这种方法(它有效):
class Player:
def __init__(self, name, age, gender):
self.name = name
self.age = age
self.gender = gender
def other(self):
return f'<{self.name} ({self.age})>'
data = [
Player('Jack', 21, 'm').other(),
Player('Ryan', 18, 'm').other(),
Player('Jane', 35, 'f').other(),
]
df = pd.DataFrame(data, columns=['player'])
print(df)
player
0 <Jack (21)>
1 <Ryan (18)>
2 <Jane (35)>
print(pa.Table.from_pandas(df))
pyarrow.Table
player: string
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7664 次 |
| 最近记录: |