Fra*_*mes 5 c++ templates metaprogramming biginteger fibonacci
最近在一次求职面试中,我被要求给出第三类斐波那契数列的第 100 个元素的结果(Fib(n)=Fib(n-1)+Fib(n-2)+Fib(n-3)。我用Mathematical Induction完成并构造了一个类来呈现大于long long的数字。然后我被要求通过模板元编程来实现它。问题是结果会超出long long的范围,我不知道如何解决这个问题。这是我使用模板元编程的代码。
template<long long num>
struct fib
{
enum { result = fib<num - 1>::result + fib<num - 2>::result + fib<num - 3>::result};
};
template<>
struct fib<0>
{
enum { result = 1 };
};
template<>
struct fib<1>
{
enum { result = 1 };
};
template<>
struct fib<2>
{
enum { result = 2 };
};
template<>
struct fib<3>
{
enum { result = 4 };
};
int main()
{
cout << fib<100>::result << endl;
return 0;
}
Run Code Online (Sandbox Code Playgroud)
一种可能的实现是使用自定义结构而不是内置类型来存储数字。例如,您可以存储这样的数字:
template <int... Digits>
struct number<Digits... > { };
Run Code Online (Sandbox Code Playgroud)
注:加法时为简单起见,我以相反的顺序存储数字,因此数字275存储为number<5, 7, 2>.
Fibonacci 只需要加法,因此您只需定义加法,例如模板add(实际实现见答案末尾)。
然后你可以fib很容易地定义模板:
template <int N>
struct fib_impl {
using type = add_t<
typename fib_impl<N-1>::type,
typename fib_impl<N-2>::type,
typename fib_impl<N-3>::type>;
};
template <>
struct fib_impl<0> { using type = number<0>; };
template <>
struct fib_impl<1> { using type = number<0>; };
template <>
struct fib_impl<2> { using type = number<1>; };
template <int N>
using fib = typename fib_impl<N>::type;
Run Code Online (Sandbox Code Playgroud)
使用适当的输出运算符(见下文),您可以打印第 100 个 Tribonacci 数:
int main() {
std::cout << fib<100>{} << "\n";
}
Run Code Online (Sandbox Code Playgroud)
哪些输出:
53324762928098149064722658
Run Code Online (Sandbox Code Playgroud)
虽然OEIS 中不存在第 100 个,但您可以检查第 37 个是否正确:
static_assert(std::is_same_v<fib<37>, number<2, 5, 8, 6, 3, 4, 2, 3, 1, 1>>);
Run Code Online (Sandbox Code Playgroud)
operator<<:std::ostream& operator<<(std::ostream &out, number<>) {
return out;
}
template <int Digit, int... Digits>
std::ostream& operator<<(std::ostream &out, number<Digit, Digits... >) {
// Do not forget that number<> is in reverse order:
return out << number<Digits... >{} << Digit;
}
Run Code Online (Sandbox Code Playgroud)
add模板的实现:cat连接数字的小实用程序:// Small concatenation utility:
template <class N1, class N2>
struct cat;
template <int... N1, int... N2>
struct cat<number<N1... >, number<N2... >> {
using type = number<N1... , N2...>;
};
template <class N1, class N2>
using cat_t = typename cat<N1, N2>::type;
Run Code Online (Sandbox Code Playgroud)
template <class AccNumber, int Carry, class Number1, class Number2>
struct add_impl;
template <class AccNumber, int Carry>
struct add_impl<AccNumber, Carry, number<>, number<>> {
using type = std::conditional_t<Carry == 0, AccNumber, cat_t<AccNumber, number<1>>>;
};
template <class AccNumber, int Carry,
int Digit2, int... Digits2>
struct add_impl<AccNumber, Carry, number<>, number<Digit2, Digits2...>> {
using type = typename add_impl<
cat_t<AccNumber, number<(Digit2 + Carry) % 10>>,
(Digit2 + Carry) / 10,
number<Digits2... >, number<>>::type;
};
template <class AccNumber, int Carry,
int Digit1, int... Digits1>
struct add_impl<AccNumber, Carry, number<Digit1, Digits1... >, number<>> {
using type = typename add_impl<
cat_t<AccNumber, number<(Digit1 + Carry) % 10>>,
(Digit1 + Carry) / 10,
number<Digits1... >, number<>>::type;
};
template <class AccNumber, int Carry,
int Digit1, int... Digits1, int Digit2, int... Digits2>
struct add_impl<AccNumber, Carry, number<Digit1, Digits1... >, number<Digit2, Digits2...>> {
using type = typename add_impl<
cat_t<AccNumber, number<(Digit1 + Digit2 + Carry) % 10>>,
(Digit1 + Digit2 + Carry) / 10,
number<Digits1... >, number<Digits2... >>::type;
};
Run Code Online (Sandbox Code Playgroud)
template <class... Numbers>
struct add;
template <class Number>
struct add<Number> {
using type = Number;
};
template <class Number, class... Numbers>
struct add<Number, Numbers... > {
using type = typename add_impl<
number<>, 0, Number, typename add<Numbers... >::type>::type;
};
template <class... Numbers>
using add_t = typename add<Numbers... >::type;
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
353 次 |
| 最近记录: |