oso*_*ted 2 python conda tensorflow jupyter-notebook
我根据以下说明使用 conda 在我的 mac 上安装了 tensorflow 2 :
conda create -n tf2 tensorflow
Run Code Online (Sandbox Code Playgroud)
然后我安装了 ipykernel 以将这个新环境添加到我的 jupyter notebook 内核中,如下所示:
conda activate tf2
conda install ipykernel
python -m ipykernel install --user --name=tf2
Run Code Online (Sandbox Code Playgroud)
这似乎工作得很好,我能够在我的 jupyter 笔记本内核上看到我的tf2环境。
然后我尝试运行简单的 MNIST示例来检查是否一切正常,当我执行这行代码时:
model.fit(x_train, y_train, epochs=5)
Run Code Online (Sandbox Code Playgroud)
我的 jupyter 笔记本的内核在没有更多信息的情况下就死了。
我通过python mnist_test.py和ipython(一个命令一个命令)在我的终端上执行了相同的代码,我没有任何问题,让我假设我的 tensorflow 2 已正确安装在我的 conda 环境中。
关于安装过程中出了什么问题的任何想法?
版本:
python==3.7.5
tensorboard==2.0.0
tensorflow==2.0.0
tensorflow-estimator==2.0.0
ipykernel==5.1.3
ipython==7.10.2
jupyter==1.0.0
jupyter-client==5.3.4
jupyter-console==5.2.0
jupyter-core==4.6.1
Run Code Online (Sandbox Code Playgroud)
这里我放了完整的脚本以及执行的STDOUT:
import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sns
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
nn_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
nn_model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
nn_model.fit(x_train, y_train, epochs=5)
nn_model.evaluate(x_test, y_test, verbose=2)
Run Code Online (Sandbox Code Playgroud)
(tf2) ? tensorflow2 python mnist_test.py 2020-01-03 10:46:10.854619: I tensorflow/core/platform/cpu_feature_guard.cc:145] 此 TensorFlow 二进制文件使用 Intel(R) MKL-DNN 进行了优化,以在性能方面使用以下 CPU 指令关键操作:SSE4.1 SSE4.2 AVX AVX2 FMA 要在非 MKL-DNN 操作中启用它们,请使用适当的编译器标志重建 TensorFlow。2020-01-03 10:46:10.854860: I tensorflow/core/common_runtime/process_util.cc:115] 使用默认互操作设置创建新线程池:8. 使用 inter_op_parallelism_threads 进行调优以获得最佳性能。在 60000 个样本上训练 Epoch 1/5 60000/60000 [==============================] - 6s 102us/sample - 损失:0.3018 - 准确度:0.9140 Epoch 2/5 60000/60000 [==============================] - 6s 103us/sample - 损失:0.1437 - 准确度:0。9571 Epoch 3/5 60000/60000 [==============================] - 6s 103us/样本 - 损失:0.1054 -准确度:0.9679 Epoch 4/5 60000/60000 [==============================] - 6s 103us/sample - 损失: 0.0868 - 准确度:0.9729 Epoch 5/5 60000/60000 [==============================] - 6s 103us/sample -损失:0.0739 - 准确度:0.9772 10000/1 - 1s - 损失:0.0359 - 准确度:0.9782 (tf2) ? 张量流2
在尝试了不同的事情后,我使用以下命令在调试模式下运行 jupyter notebook:
jupyter notebook --debug
Run Code Online (Sandbox Code Playgroud)
然后在我的笔记本上执行命令后,我收到错误消息:
Run Code Online (Sandbox Code Playgroud)OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.
在此讨论之后,在虚拟环境中安装 nomkl 对我有用。
conda install nomkl
Run Code Online (Sandbox Code Playgroud)