Tha*_*yen 10 python time-series pandas technical-indicator
我有一个时间序列数据。生成数据
date_rng = pd.date_range('2019-01-01', freq='s', periods=400)
df = pd.DataFrame(np.random.lognormal(.005, .5,size=(len(date_rng), 3)),
columns=['data1', 'data2', 'data3'],
index= date_rng)
s = df['data1']
Run Code Online (Sandbox Code Playgroud)
我想创建一条连接局部最大值和局部最小值的锯齿形线,它满足在 y 轴上|highest - lowest value|
每条锯齿形线必须超过前一个距离的百分比(比如 20%)的条件之字形线,以及预先设定的值 k(比如 1.2)
我可以使用以下代码找到局部极值:
# Find peaks(max).
peak_indexes = signal.argrelextrema(s.values, np.greater)
peak_indexes = peak_indexes[0]
# Find valleys(min).
valley_indexes = signal.argrelextrema(s.values, np.less)
valley_indexes = valley_indexes[0]
# Merge peaks and valleys data points using pandas.
df_peaks = pd.DataFrame({'date': s.index[peak_indexes], 'zigzag_y': s[peak_indexes]})
df_valleys = pd.DataFrame({'date': s.index[valley_indexes], 'zigzag_y': s[valley_indexes]})
df_peaks_valleys = pd.concat([df_peaks, df_valleys], axis=0, ignore_index=True, sort=True)
# Sort peak and valley datapoints by date.
df_peaks_valleys = df_peaks_valleys.sort_values(by=['date'])
Run Code Online (Sandbox Code Playgroud)
但我不知道如何将阈值条件应用于它。请告诉我如何应用这样的条件。
由于数据可能包含数百万个时间戳,因此强烈建议进行高效计算
示例输出,来自我的数据:
# Instantiate axes.
(fig, ax) = plt.subplots()
# Plot zigzag trendline.
ax.plot(df_peaks_valleys['date'].values, df_peaks_valleys['zigzag_y'].values,
color='red', label="Zigzag")
# Plot original line.
ax.plot(s.index, s, linestyle='dashed', color='black', label="Org. line", linewidth=1)
# Format time.
ax.xaxis_date()
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))
plt.gcf().autofmt_xdate() # Beautify the x-labels
plt.autoscale(tight=True)
plt.legend(loc='best')
plt.grid(True, linestyle='dashed')
Run Code Online (Sandbox Code Playgroud)
我已经回答了我对这个问题的最佳理解。然而变量 K 如何影响滤波器尚不清楚。
您想要根据运行条件过滤极值。我假设您想要标记与最后标记的极值的相对距离大于 p% 的所有极值。我进一步假设您始终认为时间序列的第一个元素是有效/相关点。
我通过以下过滤功能实现了这一点:
def filter(values, percentage):
previous = values[0]
mask = [True]
for value in values[1:]:
relative_difference = np.abs(value - previous)/previous
if relative_difference > percentage:
previous = value
mask.append(True)
else:
mask.append(False)
return mask
Run Code Online (Sandbox Code Playgroud)
要运行您的代码,我首先导入依赖项:
from scipy import signal
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
Run Code Online (Sandbox Code Playgroud)
为了使代码可重现,我修复了随机种子:
np.random.seed(0)
Run Code Online (Sandbox Code Playgroud)
这里剩下的就是copypasta。请注意,我减少了样本量以使结果更清晰。
date_rng = pd.date_range('2019-01-01', freq='s', periods=30)
df = pd.DataFrame(np.random.lognormal(.005, .5,size=(len(date_rng), 3)),
columns=['data1', 'data2', 'data3'],
index= date_rng)
s = df['data1']
# Find peaks(max).
peak_indexes = signal.argrelextrema(s.values, np.greater)
peak_indexes = peak_indexes[0]
# Find valleys(min).
valley_indexes = signal.argrelextrema(s.values, np.less)
valley_indexes = valley_indexes[0]
# Merge peaks and valleys data points using pandas.
df_peaks = pd.DataFrame({'date': s.index[peak_indexes], 'zigzag_y': s[peak_indexes]})
df_valleys = pd.DataFrame({'date': s.index[valley_indexes], 'zigzag_y': s[valley_indexes]})
df_peaks_valleys = pd.concat([df_peaks, df_valleys], axis=0, ignore_index=True, sort=True)
# Sort peak and valley datapoints by date.
df_peaks_valleys = df_peaks_valleys.sort_values(by=['date'])
Run Code Online (Sandbox Code Playgroud)
然后我们使用过滤函数:
p = 0.2 # 20%
filter_mask = filter(df_peaks_valleys.zigzag_y, p)
filtered = df_peaks_valleys[filter_mask]
Run Code Online (Sandbox Code Playgroud)
并按照您之前的绘图以及新过滤的极值进行绘图:
# Instantiate axes.
(fig, ax) = plt.subplots(figsize=(10,10))
# Plot zigzag trendline.
ax.plot(df_peaks_valleys['date'].values, df_peaks_valleys['zigzag_y'].values,
color='red', label="Extrema")
# Plot zigzag trendline.
ax.plot(filtered['date'].values, filtered['zigzag_y'].values,
color='blue', label="ZigZag")
# Plot original line.
ax.plot(s.index, s, linestyle='dashed', color='black', label="Org. line", linewidth=1)
# Format time.
ax.xaxis_date()
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d"))
plt.gcf().autofmt_xdate() # Beautify the x-labels
plt.autoscale(tight=True)
plt.legend(loc='best')
plt.grid(True, linestyle='dashed')
Run Code Online (Sandbox Code Playgroud)
编辑:
如果想要将第一个点和最后一个点都视为有效,那么您可以按如下方式调整过滤器函数:
def filter(values, percentage):
# the first value is always valid
previous = values[0]
mask = [True]
# evaluate all points from the second to (n-1)th
for value in values[1:-1]:
relative_difference = np.abs(value - previous)/previous
if relative_difference > percentage:
previous = value
mask.append(True)
else:
mask.append(False)
# the last value is always valid
mask.append(True)
return mask
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2377 次 |
最近记录: |