Eul*_*ter 2 performance benchmarking r matrix microbenchmark
我读到R在矩阵中使用列优先存储,这意味着附近列中的元素存储在连续块或类似的东西中。这让我想知道:是按行填充矩阵更快(byrow=TRUE在基本 R 函数中使用matrix())还是先按列填充矩阵(使用默认值byrow=FALSE)然后使用转置它更快t()?
我尝试对其进行基准测试。
> microbenchmark(matrix(1, n, n, byrow=TRUE))
Unit: seconds
expr min lq mean median uq max neval
matrix(1, n, n, byrow = TRUE) 1.047379 1.071353 1.105468 1.081795 1.112995 1.628675 100
Run Code Online (Sandbox Code Playgroud)
> microbenchmark(t(matrix(1, n, n)))
Unit: seconds
expr min lq mean median uq max neval
t(matrix(1, n, n)) 1.43931 1.536333 1.692572 1.61793 1.726244 3.070821 100
Run Code Online (Sandbox Code Playgroud)
似乎按行填充矩阵更快!我错过了什么吗?我原以为这R只会做一些重新标记,t()但实际上比逐行填充矩阵要慢!
对此有解释吗?我很困惑。
在 ThomasIsCoding 的回答和对自己进行了几次基准测试之后,它看起来取决于行数和列数。
t()更快。byrow=TRUE更快。byrow=TRUE更快。我认为这取决于列数和行数之间的关系。
需要说明的是,在“按列填充矩阵然后转置”的方法中,按行填充速度更快,但转置是速度的瓶颈。
n <- 1e5
m <- 1e3
microbenchmark(matrix(1, n, m, byrow=TRUE),
t(matrix(1, m, n)),
check = "equal",
unit = "relative",
times = 10)
Run Code Online (Sandbox Code Playgroud)
以至于
Unit: relative
expr min lq mean median uq max neval
matrix(1, n, m, byrow = TRUE) 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 10
t(matrix(1, m, n)) 3.57835 3.556422 3.935004 3.583247 3.714243 4.820607 10
Run Code Online (Sandbox Code Playgroud)
和
> # fill by row
> system.time(x <- matrix(1, n, m, byrow=TRUE))
user system elapsed
0.48 0.08 0.61
> # fill by column
> system.time(y <- matrix(1, m, n))
user system elapsed
0.03 0.14 0.17
> # transpose
> system.time(t(y))
user system elapsed
1.59 0.08 1.71
Run Code Online (Sandbox Code Playgroud)
n <- 1e3
m <- 1e5
microbenchmark(matrix(1, n, m, byrow=TRUE),
t(matrix(1, m, n)),
check = "equal",
unit = "relative",
times = 10)
Run Code Online (Sandbox Code Playgroud)
以至于
Unit: relative
expr min lq mean median uq max neval
matrix(1, n, m, byrow = TRUE) 1.885902 1.893168 1.717817 1.730453 1.744869 1.480463 10
t(matrix(1, m, n)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10
Run Code Online (Sandbox Code Playgroud)
和
> # fill by row
> system.time(x <- matrix(1, n, m, byrow=TRUE))
user system elapsed
0.92 0.39 1.33
> # fill by column
> system.time(y <- matrix(1, m, n))
user system elapsed
0.13 0.08 0.20
> # transpose
> system.time(t(y))
user system elapsed
0.47 0.10 0.58
Run Code Online (Sandbox Code Playgroud)
n <- 1e4
m <- 1e4
microbenchmark(matrix(1, n, m, byrow=TRUE),
t(matrix(1, m, n)),
check = "equal",
unit = "relative",
times = 10)
Run Code Online (Sandbox Code Playgroud)
以至于
Unit: relative
expr min lq mean median uq max neval
matrix(1, n, m, byrow = TRUE) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10
t(matrix(1, m, n)) 1.163218 1.197249 1.279579 1.178185 1.354539 1.387548 10
Run Code Online (Sandbox Code Playgroud)
和
> # fill by row
> system.time(x <- matrix(1, n, m, byrow=TRUE))
user system elapsed
1.18 0.18 1.47
> # fill by column
> system.time(y <- matrix(1, m, n))
user system elapsed
0.08 0.10 0.17
> # transpose
> system.time(t(y))
user system elapsed
2.47 0.14 2.63
Run Code Online (Sandbox Code Playgroud)