基于"2-d迭代器"的"排序1-d迭代器"(迭代器的笛卡尔积)

Dan*_*n H 12 python iterator

我正在寻找一种在Python中执行此操作的简洁方法:

假设我有两个迭代器"iter1"和"iter2":也许是一个素数生成器和itertools.count().我先验地知道两者都是无限的并且单调递增.现在我想利用有两个参数的一些操作简单的"OP"(也许operator.add或operator.mul),并计算出每个元素的第一个迭代器与每一个元素的下一个,采用上述操作,则产生逐一时间,排序.显然,这本身就是一个无限的序列.(正如@RyanThompson在评论中所提到的:这将被称为这些序列的笛卡尔积 ...或者更准确地说,是该产品的第1类.)

什么是最好的方式:

  • 总结"iter1","iter2"和"op"在一个迭代中,它本身产生单调增加输出的值.

允许的简化假设:

  • 如果有帮助,我们可以假设op(a,b)> = a和op(a,b)> = b.
  • 如果它有帮助,我们可以假设所有b> c的op(a,b)> op(a,c).

也允许:

  • 同样可以接受的是迭代器以"通常增加"的顺序产生值......我的意思是迭代可能偶尔给我一个小于前一个的数字,但它会以某种方式使"辅助信息"可用(如通过这个对象的方法会说"我不会保证我给你的下一个值会比我给你的那个更大,但我确定所有未来的值至少都会比N更大.".. ..和"N"本身是单调增加的.

我能想到这样做的唯一方法是一种"对角化"过程,在这种过程中,我保留了越来越多的部分处理的迭代,并且"向前看"所有可能的next()值的最小值,并产生.但是,即使在我开始对它进行编码之前,这种古怪的聚集和一堆deques似乎都是异乎寻常的.

请:那不是立足于事实,我的例子中提到的质数或计数()你的答案....我对这个非常的概念,不相关的素数和计算多种用途().


更新:天啊!多么棒的讨论!并通过非常彻底的解释得到一些很好的答案.非常感谢.StackOverflow摇滚; 你们好棒.

我将尽快深入研究每个答案,并给出示例代码.从我到目前为止所读到的内容来看,我最初的怀疑是确认没有"简单的Python成语"来做到这一点.相反,通过这种或那种方式,我无法避免无限期地保持iter1和iter2的所有产生的值.

FWIW:如果你想尝试你的解决方案,这是一个官方的"测试案例".

import operator

def powers_of_ten():
    n = 0
    while True:
        yield 10**n
        n += 1

def series_of_nines():
    yield 1
    n = 1
    while True:
        yield int("9"*n)
        n += 1

op = operator.mul
iter1 = powers_of_ten()
iter2 = series_of_nines()

# given (iter1, iter2, op), create an iterator that yields:
# [1, 9, 10, 90, 99, 100, 900, 990, 999, 1000, 9000, 9900, 9990, 9999, 10000, ...]
Run Code Online (Sandbox Code Playgroud)

Win*_*ert 5

import heapq
import itertools
import operator


def increasing(fn, left, right):
    """
    Given two never decreasing iterators produce another iterator
    resulting from passing the value from left and right to fn.
    This iterator should also be never decreasing.
    """
    # Imagine an infinite 2D-grid.
    # Each column corresponds to an entry from right
    # Each row corresponds to an entry from left
    # Each cell correspond to apply fn to those two values

    # If the number of columns were finite, then we could easily solve
    # this problem by keeping track of our current position in each column
    # in each iteration, we'd take the smallest value report it, and then
    # move down in that column. This works because the values must increase
    # as we move down the column. That means the current set of values
    # under consideration must include the lowest value not yet reported

    # To extend this to infinite columns, at any point we always track a finite
    # number of columns. The last column current tracked is always in the top row
    # if it moves down from the top row, we add a new column which starts at the top row
    # because the values are increasing as we move to the right, we know that
    # this last column is always lower then any columns that come after it





    # Due to infinities, we need to keep track of all
    # items we've ever seen. So we put them in this list
    # The list contains the first part of the incoming iterators that
    # we have explored
    left_items = [next(left)]
    right_items = [next(right)]

    # we use a heap data structure, it allows us to efficiently
    # find the lowest of all value under consideration
    heap = []

    def add_value(left_index, right_index):
        """
        Add the value result from combining the indexed attributes
        from the two iterators. Assumes that the values have already
        been copied into the lists
        """
        value = fn( left_items[left_index], right_items[right_index] )
        # the value on the heap has the index and value.
        # since the value is first, low values will be "first" on the heap
        heapq.heappush( heap, (value, left_index, right_index) )

    # we know that every other value must be larger then 
    # this one. 
    add_value(0,0)

    # I assume the incoming iterators are infinite
    while True:
        # fetch the lowest of all values under consideration
        value, left_index, right_index = heapq.heappop(heap)

        # produce it
        yield value

        # add moving down the column
        if left_index + 1 == len(left_items):
            left_items.append(next(left))

        add_value(left_index+1, right_index)

        # if this was the first row in this column, add another column
        if left_index == 0:
            right_items.append( next(right) )
            add_value(0, right_index+1)






def fib():
    a = 1
    b = 1
    while True:
        yield a
        a,b = b,a+b



r = increasing(operator.add, fib(), itertools.count() )
for x in range(100):
    print next(r)
Run Code Online (Sandbox Code Playgroud)