在 Pandas UDF PySpark 中传递多列

K. *_* K. 4 python-3.x pandas apache-spark pyspark

我想计算 PySpark DataFrame 的两列之间的 Jaro Winkler 距离。Jaro Winkler 距离可通过所有节点上的 pyjarowinkler 包获得。

pyjarowinkler 的工作原理如下:

from pyjarowinkler import distance
distance.get_jaro_distance("A", "A", winkler=True, scaling=0.1)
Run Code Online (Sandbox Code Playgroud)

输出:

1.0
Run Code Online (Sandbox Code Playgroud)

我正在尝试编写一个 Pandas UDF 以将两列作为系列传递并使用 lambda 函数计算距离。这是我的做法:

@pandas_udf("float", PandasUDFType.SCALAR)
def get_distance(col1, col2):
    import pandas as pd
    distance_df  = pd.DataFrame({'column_A': col1, 'column_B': col2})
    distance_df['distance'] = distance_df.apply(lambda x: distance.get_jaro_distance(str(distance_df['column_A']), str(distance_df['column_B']), winkler = True, scaling = 0.1))
    return distance_df['distance']

temp = temp.withColumn('jaro_distance', get_distance(temp.x, temp.x))
Run Code Online (Sandbox Code Playgroud)

我应该能够在上述函数中传递任意两个字符串列。我得到以下输出:

+---+---+---+-------------+
|  x|  y|  z|jaro_distance|
+---+---+---+-------------+
|  A|  1|  2|         null|
|  B|  3|  4|         null|
|  C|  5|  6|         null|
|  D|  7|  8|         null|
+---+---+---+-------------+
Run Code Online (Sandbox Code Playgroud)

预期输出:

+---+---+---+-------------+
|  x|  y|  z|jaro_distance|
+---+---+---+-------------+
|  A|  1|  2|          1.0|
|  B|  3|  4|          1.0|
|  C|  5|  6|          1.0|
|  D|  7|  8|          1.0|
+---+---+---+-------------+
Run Code Online (Sandbox Code Playgroud)

我怀疑这可能是因为str(distance_df['column_A'])不正确。它包含所有行值的串联字符串。

虽然这段代码对我有用:

@pandas_udf("float", PandasUDFType.SCALAR)
def get_distance(col):
    return col.apply(lambda x: distance.get_jaro_distance(x, "A", winkler = True, scaling = 0.1))

temp = temp.withColumn('jaro_distance', get_distance(temp.x))
Run Code Online (Sandbox Code Playgroud)

输出:

+---+---+---+-------------+
|  x|  y|  z|jaro_distance|
+---+---+---+-------------+
|  A|  1|  2|          1.0|
|  B|  3|  4|          0.0|
|  C|  5|  6|          0.0|
|  D|  7|  8|          0.0|
+---+---+---+-------------+
Run Code Online (Sandbox Code Playgroud)

有没有办法用 Pandas UDF 做到这一点?我正在处理数百万条记录,因此 UDF 会很昂贵,但如果有效,仍然可以接受。谢谢。

jxc*_*jxc 6

错误来自您在 df.apply 方法中的函数,将其调整为以下内容应该可以修复它:

@pandas_udf("float", PandasUDFType.SCALAR)
def get_distance(col1, col2):
    import pandas as pd
    distance_df  = pd.DataFrame({'column_A': col1, 'column_B': col2})
    distance_df['distance'] = distance_df.apply(lambda x: distance.get_jaro_distance(x['column_A'], x['column_B'], winkler = True, scaling = 0.1), axis=1)
    return distance_df['distance']
Run Code Online (Sandbox Code Playgroud)

然而,熊猫df.apply方法并不矢量化其击败的目的为什么我们需要pandas_udfUDF中PySpark。一个更快、更少开销的解决方案是使用列表理解来创建返回的 pd.Series(查看此链接以了解有关 Pandas df.apply 及其替代方案的更多讨论):

from pandas import Series

@pandas_udf("float", PandasUDFType.SCALAR)
def get_distance(col1, col2):
   return Series([ distance.get_jaro_distance(c1, c2, winkler=True, scaling=0.1) for c1,c2 in zip(col1, col2) ])

df.withColumn('jaro_distance', get_distance('x', 'y')).show()
+---+---+---+-------------+
|  x|  y|  z|jaro_distance|
+---+---+---+-------------+
| AB| 1B|  2|         0.67|
| BB| BB|  4|          1.0|
| CB| 5D|  6|          0.0|
| DB|B7F|  8|         0.61|
+---+---+---+-------------+
Run Code Online (Sandbox Code Playgroud)