MBr*_*zle 13 python numpy dataframe pandas
我有一个 Pandas DataFrame 的形式:
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3
1 71 2018-10-17 20:12:43+00:00 114429 3
2 71 2018-10-17 20:12:43+00:00 114431 79
3 71 2019-11-06 00:51:14+00:00 216009 100
4 71 2019-11-06 00:51:14+00:00 216011 150
5 71 2019-11-06 00:51:14+00:00 216013 180
6 92 2019-12-01 00:51:14+00:00 114430 19
7 92 2019-12-01 00:51:14+00:00 114433 79
8 92 2019-12-01 00:51:14+00:00 114434 100
Run Code Online (Sandbox Code Playgroud)
我想要做的是填写缺少的sequence_no per id /start_time组合。例如,id/start_time配对的71和2018-10-17 20:12:43+00:00,缺少sequence_no 114430.对于每个加入缺少sequence_no,我还需要平均/内插缺失value列值。因此,上述数据的最终处理最终将如下所示:
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3
1 71 2018-10-17 20:12:43+00:00 114429 3
2 71 2018-10-17 20:12:43+00:00 114430 41 **
3 71 2018-10-17 20:12:43+00:00 114431 79
4 71 2019-11-06 00:51:14+00:00 216009 100
5 71 2019-11-06 00:51:14+00:00 216010 125 **
6 71 2019-11-06 00:51:14+00:00 216011 150
7 71 2019-11-06 00:51:14+00:00 216012 165 **
8 71 2019-11-06 00:51:14+00:00 216013 180
9 92 2019-12-01 00:51:14+00:00 114430 19
10 92 2019-12-01 00:51:14+00:00 114431 39 **
11 92 2019-12-01 00:51:14+00:00 114432 59 **
12 92 2019-12-01 00:51:14+00:00 114433 79
13 92 2019-12-01 00:51:14+00:00 114434 100
Run Code Online (Sandbox Code Playgroud)
(**添加到新插入行的右侧以便于阅读)
我最初的解决方案在很大程度上依赖于对大型数据表的 Python 循环,因此它似乎是 numpy 和 pandas 大放异彩的理想场所。依靠像Pandas: create rows to fill numeric gaps这样的答案,我想出了:
import pandas as pd
import numpy as np
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a new DataFrame with the min/max `sequence_no` values for each `id`/`start_time` pairing
by_start = df.groupby(['start_time', 'id'])
ranges = by_start.agg(
sequence_min=('sequence_no', np.min), sequence_max=('sequence_no', np.max)
)
reset = ranges.reset_index()
mins = reset['sequence_min']
maxes = reset['sequence_max']
# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
start_time=reset['start_time'].repeat(maxes - mins + 1),
id=reset['id'].repeat(maxes - mins + 1),
sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))
# Use the above generated DataFrame as an index to generate the missing rows, then interpolate
expanded_index = pd.MultiIndex.from_frame(expanded)
df.set_index(
['start_time', 'id', 'sequence_no']
).reindex(expanded_index).interpolate()
Run Code Online (Sandbox Code Playgroud)
输出是正确的,但它的运行速度几乎与我的 lot-of-python-loops 解决方案完全相同。我确信在某些地方我可以减少几步,但我测试中最慢的部分似乎是reindex. 鉴于现实世界的数据包含近一百万行(频繁操作),与我已经编写的内容相比,是否有任何明显的方法可以获得一些性能优势?有什么方法可以加快这种转变?
在足够大的数据集上进行测试时,将这个答案中的合并解决方案与扩展数据框的原始构造相结合,可以产生迄今为止最快的结果:
import pandas as pd
import numpy as np
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([
('sequence_min', np.min), ('sequence_max', np.max)
])
reset = ranges.reset_index()
mins = reset['sequence_min']
maxes = reset['sequence_max']
# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
start_time=reset['start_time'].repeat(maxes - mins + 1),
id=reset['id'].repeat(maxes - mins + 1),
sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))
# merge expanded and df
merge = expanded.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values
merge['value'] = merge['value'].interpolate()
Run Code Online (Sandbox Code Playgroud)
使用merge而不是reindex可能会加快速度。此外,也可以使用 map 而不是列表理解。
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([('sequence_min', np.min), ('sequence_max', np.max)])
# map with range to create the sequence number rnage
ranges['sequence_no'] = list(map(lambda x,y: range(x,y), ranges.pop('sequence_min'), ranges.pop('sequence_max')+1))
# explode you DataFrame
new_df = ranges.explode('sequence_no')
# merge new_df and df
merge = new_df.reset_index().merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values
merge['value'] = merge['value'].interpolate()
start_time id sequence_no value
0 2018-10-17 20:12:43+00:00 71 114428 3.0
1 2018-10-17 20:12:43+00:00 71 114429 3.0
2 2018-10-17 20:12:43+00:00 71 114430 41.0
3 2018-10-17 20:12:43+00:00 71 114431 79.0
4 2019-11-06 00:51:14+00:00 71 216009 100.0
5 2019-11-06 00:51:14+00:00 71 216010 125.0
6 2019-11-06 00:51:14+00:00 71 216011 150.0
7 2019-11-06 00:51:14+00:00 71 216012 165.0
8 2019-11-06 00:51:14+00:00 71 216013 180.0
9 2019-12-01 00:51:14+00:00 92 114430 19.0
10 2019-12-01 00:51:14+00:00 92 114431 39.0
11 2019-12-01 00:51:14+00:00 92 114432 59.0
12 2019-12-01 00:51:14+00:00 92 114433 79.0
13 2019-12-01 00:51:14+00:00 92 114434 100.0
Run Code Online (Sandbox Code Playgroud)