Sta*_*cks 3 python nlp pdfminer
我在下面的示例中使用 PDFMiner 生成单词 x,y 坐标,但是结果是一行一行的。如何将每个单词与另一个单词分开,而不是逐行拆分单词组(请参见下面的示例)。我已经尝试了PDFMiner 教程中的几个参数。LTTextBox
并且LTText
都被试过了。此外,我不能使用文本分析中通常使用的开始和结束偏移量。
这个 PDF 是一个很好的例子,它在下面的代码中使用。
http://www.africau.edu/images/default/sample.pdf
from pdfminer.layout import LAParams, LTTextBox, LTText
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager
from pdfminer.converter import PDFPageAggregator
#Imports Searchable PDFs and prints x,y coordinates
fp = open('C:\sample.pdf', 'rb')
manager = PDFResourceManager()
laparams = LAParams()
dev = PDFPageAggregator(manager, laparams=laparams)
interpreter = PDFPageInterpreter(manager, dev)
pages = PDFPage.get_pages(fp)
for page in pages:
print('--- Processing ---')
interpreter.process_page(page)
layout = dev.get_result()
for lobj in layout:
if isinstance(lobj, LTText):
x, y, text = lobj.bbox[0], lobj.bbox[3], lobj.get_text()
print('At %r is text: %s' % ((x, y), text))
Run Code Online (Sandbox Code Playgroud)
这将返回可搜索 PDF 的 x,y 坐标,如下所示:
--- Processing ---
At (57.375, 747.903) is text: A Simple PDF File
At (69.25, 698.098) is text: This is a small demonstration .pdf file -
At (69.25, 674.194) is text: just for use in the Virtual Mechanics tutorials. More text. And more
text. And more text. And more text. And more text.
Run Code Online (Sandbox Code Playgroud)
想要的结果(坐标代表演示):
--- Processing ---
At (57.375, 747.903) is text: A
At (69.25, 698.098) is text: Simple
At (69.25, 674.194) is text: PDF
At (69.25, 638.338) is text: File
Run Code Online (Sandbox Code Playgroud)
使用 PDFMiner,在遍历每一行之后(就像您已经做过的那样),您只能遍历该行中的每个字符。
我用下面的代码做到了这一点,同时尝试记录每个单词的第一个字符的 x, y 并设置一个条件以在每个LTAnno
(例如 \n )或.get_text() == ' '
空白处拆分单词。
from pdfminer.layout import LAParams, LTTextBox, LTText, LTChar, LTAnno
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager
from pdfminer.converter import PDFPageAggregator
#Imports Searchable PDFs and prints x,y coordinates
fp = open('C:\sample.pdf', 'rb')
manager = PDFResourceManager()
laparams = LAParams()
dev = PDFPageAggregator(manager, laparams=laparams)
interpreter = PDFPageInterpreter(manager, dev)
pages = PDFPage.get_pages(fp)
for page in pages:
print('--- Processing ---')
interpreter.process_page(page)
layout = dev.get_result()
x, y, text = -1, -1, ''
for textbox in layout:
if isinstance(textbox, LTText):
for line in textbox:
for char in line:
# If the char is a line-break or an empty space, the word is complete
if isinstance(char, LTAnno) or char.get_text() == ' ':
if x != -1:
print('At %r is text: %s' % ((x, y), text))
x, y, text = -1, -1, ''
elif isinstance(char, LTChar):
text += char.get_text()
if x == -1:
x, y, = char.bbox[0], char.bbox[3]
# If the last symbol in the PDF was neither an empty space nor a LTAnno, print the word here
if x != -1:
print('At %r is text: %s' % ((x, y), text))
Run Code Online (Sandbox Code Playgroud)
输出如下所示
At (64.881, 747.903) is text: A
At (90.396, 747.903) is text: Simple
At (180.414, 747.903) is text: PDF
At (241.92, 747.903) is text: File
Run Code Online (Sandbox Code Playgroud)
也许您可以优化条件来检测您的要求和喜好的单词。(例如剪切标点符号 .!? 在词尾)