RNN 中的隐藏大小与输入大小

lum*_*uri 6 python machine-translation deep-learning recurrent-neural-network pytorch

前提1:

关于 RNN 层中的神经元 - 我的理解是“在每个时间步长,每个神经元都接收输入向量 x (t) 和来自前一个时间步长 y (t –1) 的输出向量” [1]

https://github.com/ebolotin6/ebolotin6.github.io/blob/master/images/rnn.png

前提2:

也是我的理解,在Pytorch的GRU层中,input_sizehidden_​​size的含义如下:

  • input_size – 输入 x 中预期特征的数量
  • hidden_​​size – 隐藏状态中的特征数 h

所以很自然地,hidden_​​size应该代表 GRU 层中的神经元数量。

我的问题:

给定以下 GRU 层:

# assume that hidden_size = 3

class Encoder(nn.Module):
    def __init__(self, src_dictionary_size, hidden_size):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(src_dictionary_size, hidden_size)
        self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size)

Run Code Online (Sandbox Code Playgroud)

假设 hidden_​​size 为 3,我的理解是上面的 GRU 层将有 3 个神经元,每个神经元在每个时间步同时接受一个大小为 3 的输入向量。

我的问题是:为什么hidden_​​sizeinput_size的参数必须相等?即为什么 3 个神经元中的每一个都不能接受大小为 5 的输入向量?

举个例子:以下两种情况都会导致尺寸不匹配:

self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size-1)
self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size+1)
Run Code Online (Sandbox Code Playgroud)

[1] Géron,Aurélien。使用 Scikit-Learn 和 TensorFlow 进行机器学习实践(第 388 页)。奥莱利媒体。Kindle版。

[3] https://pytorch.org/docs/stable/nn.html#torch.nn.GRU


添加完整代码以实现可重复性:

# assume that hidden_size = 3

class Encoder(nn.Module):
    def __init__(self, src_dictionary_size, hidden_size):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(src_dictionary_size, hidden_size)
        self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size)

Run Code Online (Sandbox Code Playgroud)

lum*_*uri 5

我刚刚解决了这个问题,这个错误是我自己造成的。

结论input_sizehidden_​​size 的大小可以不同,并且这没有固有的问题。问题中的前提陈述正确。

上面(完整)代码的问题是 GRU 的初始隐藏状态没有正确的维度。初始隐藏状态必须与后续隐藏状态具有相同的维度。就我而言,初始隐藏状态的形状为 (1,2,5) 而不是 (1,2,4)。在前者中,5表示嵌入向量的维数。4 表示 GRU 中的hidden_​​size(神经元数量)。正确的代码如下:

import torch
import torch.nn as nn

class Encoder(nn.Module):
    def __init__(self, src_dictionary_size, input_size, hidden_size):
        super(Encoder, self).__init__()
        self.hidden_size = hidden_size
        self.embedding = nn.Embedding(src_dictionary_size, input_size)
        self.gru = nn.GRU(input_size = input_size, hidden_size = hidden_size)

    def forward(self, pad_seqs, seq_lengths, hidden):
        """
        Args:
          pad_seqs of shape (max_seq_length, batch_size, 1): Padded source sequences.
          seq_lengths: List of sequence lengths.
          hidden of shape (1, batch_size, hidden_size): Initial states of the GRU.

        Returns:
          outputs of shape (max_seq_length, batch_size, hidden_size): Padded outputs of GRU at every step.
          hidden of shape (1, batch_size, hidden_size): Updated states of the GRU.
        """
        embedded_sqs = self.embedding(pad_seqs).squeeze(2)
        packed_sqs = pack_padded_sequence(embedded_sqs, seq_lengths)
        packed_output, h_n = self.gru(packed_sqs, hidden)
        output, input_sizes = pad_packed_sequence(packed_output)

        return output, h_n

    def init_hidden(self, batch_size=1):
        return torch.zeros(1, batch_size, self.hidden_size)

def test_Encoder_shapes():
    hidden_size = 4
    embedding_size = 5
    encoder = Encoder(src_dictionary_size=5, input_size = embedding_size, hidden_size = hidden_size)
    print(encoder)

    max_seq_length = 4
    batch_size = 2
    hidden = encoder.init_hidden(batch_size=batch_size)
    pad_seqs = torch.tensor([
        [1, 2],
        [2, 3],
        [3, 0],
        [4, 0]
    ]).view(max_seq_length, batch_size, 1)

    outputs, new_hidden = encoder.forward(pad_seqs=pad_seqs, seq_lengths=[4, 2], hidden=hidden)
    assert outputs.shape == torch.Size([4, batch_size, hidden_size]), f"Bad outputs.shape: {outputs.shape}"
    assert new_hidden.shape == torch.Size([1, batch_size, hidden_size]), f"Bad new_hidden.shape: {new_hidden.shape}"
    print('Success')

test_Encoder_shapes()
Run Code Online (Sandbox Code Playgroud)