kra*_*aiz 74 python methods class decorator inspect
如何获取用@ decorator2装饰的给定类A的所有方法?
class A():
def method_a(self):
pass
@decorator1
def method_b(self, b):
pass
@decorator2
def method_c(self, t=5):
pass
Run Code Online (Sandbox Code Playgroud)
nin*_*cko 107
我已在这里回答了这个问题:在Python中通过数组索引调用函数 =)
如果您无法控制类定义,这是您想要的一种解释,这是不可能的(没有代码读取 - 反射),因为例如装饰器可能是一个无操作装饰器(如在我的链接示例中)仅返回未修改的函数.(尽管如果你允许自己包装/重新定义装饰器,请参阅方法3:将装饰器转换为"自我意识",然后你会找到一个优雅的解决方案)
这是一个可怕的糟糕黑客,但您可以使用该inspect
模块来读取源代码本身,并解析它.这在交互式解释器中不起作用,因为inspect模块将拒绝以交互模式提供源代码.但是,下面是概念证明.
#!/usr/bin/python3
import inspect
def deco(func):
return func
def deco2():
def wrapper(func):
pass
return wrapper
class Test(object):
@deco
def method(self):
pass
@deco2()
def method2(self):
pass
def methodsWithDecorator(cls, decoratorName):
sourcelines = inspect.getsourcelines(cls)[0]
for i,line in enumerate(sourcelines):
line = line.strip()
if line.split('(')[0].strip() == '@'+decoratorName: # leaving a bit out
nextLine = sourcelines[i+1]
name = nextLine.split('def')[1].split('(')[0].strip()
yield(name)
Run Code Online (Sandbox Code Playgroud)
有用!:
>>> print(list( methodsWithDecorator(Test, 'deco') ))
['method']
Run Code Online (Sandbox Code Playgroud)
请注意,必须注意解析和python语法,例如@deco
并且@deco(...
是有效的结果,但@deco2
如果我们只是要求,则不应该返回'deco'
.我们注意到根据http://docs.python.org/reference/compound_stmts.html上的官方python语法,装饰器如下:
decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE
Run Code Online (Sandbox Code Playgroud)
我们松了一口气,不必处理像这样的案件@(deco)
.但是请注意,这仍然没有真正帮助你,如果你真的有非常复杂的装饰,例如@getDecorator(...)
,如
def getDecorator():
return deco
Run Code Online (Sandbox Code Playgroud)
因此,这种解析代码的最佳解决方案无法检测到这样的情况.虽然如果你使用的是这种方法,那么你真正追求的就是在定义中的方法之上编写的内容,在本例中是getDecorator
.
根据规范,@foo1.bar2.baz3(...)
作为装饰者也是有效的.您可以扩展此方法以使用它.您也可以通过大量工作来扩展此方法以返回<function object ...>
而不是函数的名称.然而,这种方法是hackish和可怕的.
如果你没有在控制装饰定义(这是你想要什么另一种解释),那么所有这些问题消失,因为你必须在装饰是如何应用的控制.因此,您可以通过包装来修改装饰器,以创建自己的装饰器,并使用它来装饰您的功能.让我再说一遍:你可以制作一个装饰器来装饰你无法控制的装饰器,"启发"它,在我们的例子中它使它做它之前做的事情,但也将.decorator
元数据属性附加到它返回的callable ,让你跟踪"这个功能是否装饰?让我们检查function.decorator!".而且那么你可以遍历类的方法,只是检查,看看是否有装饰适当的.decorator
财产!=)如下所示:
def makeRegisteringDecorator(foreignDecorator):
"""
Returns a copy of foreignDecorator, which is identical in every
way(*), except also appends a .decorator property to the callable it
spits out.
"""
def newDecorator(func):
# Call to newDecorator(method)
# Exactly like old decorator, but output keeps track of what decorated it
R = foreignDecorator(func) # apply foreignDecorator, like call to foreignDecorator(method) would have done
R.decorator = newDecorator # keep track of decorator
#R.original = func # might as well keep track of everything!
return R
newDecorator.__name__ = foreignDecorator.__name__
newDecorator.__doc__ = foreignDecorator.__doc__
# (*)We can be somewhat "hygienic", but newDecorator still isn't signature-preserving, i.e. you will not be able to get a runtime list of parameters. For that, you need hackish libraries...but in this case, the only argument is func, so it's not a big issue
return newDecorator
Run Code Online (Sandbox Code Playgroud)
示范@decorator
:
deco = makeRegisteringDecorator(deco)
class Test2(object):
@deco
def method(self):
pass
@deco2()
def method2(self):
pass
def methodsWithDecorator(cls, decorator):
"""
Returns all methods in CLS with DECORATOR as the
outermost decorator.
DECORATOR must be a "registering decorator"; one
can make any decorator "registering" via the
makeRegisteringDecorator function.
"""
for maybeDecorated in cls.__dict__.values():
if hasattr(maybeDecorated, 'decorator'):
if maybeDecorated.decorator == decorator:
print(maybeDecorated)
yield maybeDecorated
Run Code Online (Sandbox Code Playgroud)
有用!:
>>> print(list( methodsWithDecorator(Test2, deco) ))
[<function method at 0x7d62f8>]
Run Code Online (Sandbox Code Playgroud)
但是,"注册装饰器"必须是最外面的装饰器,否则.decorator
属性注释将丢失.例如在火车上
@decoOutermost
@deco
@decoInnermost
def func(): ...
Run Code Online (Sandbox Code Playgroud)
decoOutermost
除非我们保留对"更多内部"包装器的引用,否则您只能看到公开的元数据.
旁注:上面的方法也可以构建一个.decorator
跟踪应用装饰器和输入函数以及装饰器工厂参数的整个堆栈的方法.=)例如,如果考虑注释掉的行R.original = func
,可以使用这样的方法来跟踪所有包装层.如果我写了一个装饰库,这就是我个人所做的,因为它允许深入反省.
@foo
和之间也有区别@bar(...)
.虽然它们都是规范中定义的"装饰者表达",但请注意它foo
是装饰器,同时bar(...)
返回动态创建的装饰器,然后应用它.因此,您需要一个单独的功能makeRegisteringDecoratorFactory
,有点像makeRegisteringDecorator
甚至更多META:
def makeRegisteringDecoratorFactory(foreignDecoratorFactory):
def newDecoratorFactory(*args, **kw):
oldGeneratedDecorator = foreignDecoratorFactory(*args, **kw)
def newGeneratedDecorator(func):
modifiedFunc = oldGeneratedDecorator(func)
modifiedFunc.decorator = newDecoratorFactory # keep track of decorator
return modifiedFunc
return newGeneratedDecorator
newDecoratorFactory.__name__ = foreignDecoratorFactory.__name__
newDecoratorFactory.__doc__ = foreignDecoratorFactory.__doc__
return newDecoratorFactory
Run Code Online (Sandbox Code Playgroud)
示范@decorator(...)
:
def deco2():
def simpleDeco(func):
return func
return simpleDeco
deco2 = makeRegisteringDecoratorFactory(deco2)
print(deco2.__name__)
# RESULT: 'deco2'
@deco2()
def f():
pass
Run Code Online (Sandbox Code Playgroud)
这个生成器 - 工厂包装器也可以工作:
>>> print(f.decorator)
<function deco2 at 0x6a6408>
Run Code Online (Sandbox Code Playgroud)
奖励让我们甚至尝试使用方法#3:
def getDecorator(): # let's do some dispatching!
return deco
class Test3(object):
@getDecorator()
def method(self):
pass
@deco2()
def method2(self):
pass
Run Code Online (Sandbox Code Playgroud)
结果:
>>> print(list( methodsWithDecorator(Test3, deco) ))
[<function method at 0x7d62f8>]
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,与方法2不同,@ deco被正确识别,即使它从未在类中明确写入.与method2不同,如果在运行时(手动,通过元类等)添加方法或继承该方法,这也将起作用.
请注意,您还可以修饰一个类,因此如果您"启发"一个用于装饰方法和类的装饰器,然后在要分析的类的主体内编写一个类,那么methodsWithDecorator
将装饰类返回为以及装饰方法.人们可以认为这是一个功能,但是您可以通过检查装饰器的参数来轻松编写逻辑来忽略它们,即.original
实现所需的语义.
Jas*_*n S 17
如果您确实可以控制装饰器,则可以使用装饰器类而不是函数:
class awesome(object):
def __init__(self, method):
self._method = method
def __call__(self, obj, *args, **kwargs):
return self._method(obj, *args, **kwargs)
@classmethod
def methods(cls, subject):
def g():
for name in dir(subject):
method = getattr(subject, name)
if isinstance(method, awesome):
yield name, method
return {name: method for name,method in g()}
class Robot(object):
@awesome
def think(self):
return 0
@awesome
def walk(self):
return 0
def irritate(self, other):
return 0
Run Code Online (Sandbox Code Playgroud)
如果我调用awesome.methods(Robot)
它返回
{'think': <mymodule.awesome object at 0x000000000782EAC8>, 'walk': <mymodulel.awesome object at 0x000000000782EB00>}
Run Code Online (Sandbox Code Playgroud)
Sha*_*way 14
为了扩展@ninjagecko方法2中的优秀答案:源代码解析,ast
只要inspect模块可以访问源代码,就可以使用Python 2.6中引入的模块执行自检.
def findDecorators(target):
import ast, inspect
res = {}
def visit_FunctionDef(node):
res[node.name] = [ast.dump(e) for e in node.decorator_list]
V = ast.NodeVisitor()
V.visit_FunctionDef = visit_FunctionDef
V.visit(compile(inspect.getsource(target), '?', 'exec', ast.PyCF_ONLY_AST))
return res
Run Code Online (Sandbox Code Playgroud)
我添加了一个稍微复杂的装饰方法:
@x.y.decorator2
def method_d(self, t=5): pass
Run Code Online (Sandbox Code Playgroud)
结果:
> findDecorators(A)
{'method_a': [],
'method_b': ["Name(id='decorator1', ctx=Load())"],
'method_c': ["Name(id='decorator2', ctx=Load())"],
'method_d': ["Attribute(value=Attribute(value=Name(id='x', ctx=Load()), attr='y', ctx=Load()), attr='decorator2', ctx=Load())"]}
Run Code Online (Sandbox Code Playgroud)
对于我们这些只想要绝对最简单的情况的人 - 即单文件解决方案,我们可以完全控制我们正在使用的类和我们正在尝试跟踪的装饰器,我有一个答案。ninjagecko 链接到了一个解决方案,当您可以控制要跟踪的装饰器时,但我个人发现它很复杂并且很难理解,可能是因为到目前为止我从未使用过装饰器。因此,我创建了以下示例,目标是尽可能简单明了。它是一个装饰器,一个具有多个装饰方法的类,以及用于检索+运行所有应用了特定装饰器的方法的代码。
# our decorator
def cool(func, *args, **kwargs):
def decorated_func(*args, **kwargs):
print("cool pre-function decorator tasks here.")
return_value = func(*args, **kwargs)
print("cool post-function decorator tasks here.")
return return_value
# add is_cool property to function so that we can check for its existence later
decorated_func.is_cool = True
return decorated_func
# our class, in which we will use the decorator
class MyClass:
def __init__(self, name):
self.name = name
# this method isn't decorated with the cool decorator, so it won't show up
# when we retrieve all the cool methods
def do_something_boring(self, task):
print(f"{self.name} does {task}")
@cool
# thanks to *args and **kwargs, the decorator properly passes method parameters
def say_catchphrase(self, *args, catchphrase="I'm so cool you could cook an egg on me.", **kwargs):
print(f"{self.name} says \"{catchphrase}\"")
@cool
# the decorator also properly handles methods with return values
def explode(self, *args, **kwargs):
print(f"{self.name} explodes.")
return 4
def get_all_cool_methods(self):
"""Get all methods decorated with the "cool" decorator.
"""
cool_methods = {name: getattr(self, name)
# get all attributes, including methods, properties, and builtins
for name in dir(self)
# but we only want methods
if callable(getattr(self, name))
# and we don't need builtins
and not name.startswith("__")
# and we only want the cool methods
and hasattr(getattr(self, name), "is_cool")
}
return cool_methods
if __name__ == "__main__":
jeff = MyClass(name="Jeff")
cool_methods = jeff.get_all_cool_methods()
for method_name, cool_method in cool_methods.items():
print(f"{method_name}: {cool_method} ...")
# you can call the decorated methods you retrieved, just like normal,
# but you don't need to reference the actual instance to do so
return_value = cool_method()
print(f"return value = {return_value}\n")
Run Code Online (Sandbox Code Playgroud)
运行上面的示例会得到以下输出:
explode: <bound method cool.<locals>.decorated_func of <__main__.MyClass object at 0x00000220B3ACD430>> ...
cool pre-function decorator tasks here.
Jeff explodes.
cool post-function decorator tasks here.
return value = 4
say_catchphrase: <bound method cool.<locals>.decorated_func of <__main__.MyClass object at 0x00000220B3ACD430>> ...
cool pre-function decorator tasks here.
Jeff says "I'm so cool you could cook an egg on me."
cool post-function decorator tasks here.
return value = None
Run Code Online (Sandbox Code Playgroud)
请注意,此示例中的修饰方法具有不同类型的返回值和不同的签名,因此能够检索和运行它们的实际价值有点可疑。但是,在有许多类似方法的情况下,所有方法都具有相同的签名和/或返回值类型(例如,如果您正在编写一个连接器来从一个数据库检索非标准化数据,对其进行标准化,然后将其插入到第二个数据库中)标准化数据库,并且您有一堆类似的方法,例如 15 个 read_and_normalize_table_X 方法),能够即时检索(并运行)它们可能会更有用。