Liz*_*Liz 2 python machine-learning neural-network conv-neural-network
我正在为一个多标签分类问题训练一个 CNN,并.pt用torch.save(model.state_dict(), "model.pt"). 对于当我测试了自定义函数模型某种原因,predict(x)这需要图像阵列作为输入,我得到以下错误:TypeError: '_IncompatibleKeys' object is not callable。它指出了下面 cade 的最后一块:y_test_pred = model(images_tensors)。关于这里可能是什么问题的任何想法?
import numpy as np
import cv2
import torch
from torch import nn
import torch.nn.functional as F
import os
class Net(nn.Module):
def __init__(self, classes_number):
super().__init__()
self.ConvLayer1 = nn.Sequential(
nn.Conv2d(1, 8, 5), # inp (1, 512, 512)
nn.MaxPool2d(2),
nn.ReLU() # op (8, 254, 254)
)
self.ConvLayer2 = nn.Sequential(
nn.Conv2d(8, 16, 3), # inp (8, 254, 254)
nn.MaxPool2d(2),
nn.ReLU(),
nn.BatchNorm2d(16) # op (16, 126, 126)
)
self.ConvLayer3 = nn.Sequential(
nn.Conv2d(16, 32, 3), # inp (16, 126, 126)
nn.MaxPool2d(2),
nn.ReLU(),
nn.BatchNorm2d(32) # op (32, 62, 62)
)
self.ConvLayer4 = nn.Sequential(
nn.Conv2d(32, 64, 3), # inp (32, 62, 62)
nn.MaxPool2d(2),
nn.ReLU() # op (64, 30, 30)
)
self.Lin1 = nn.Linear(30 * 30 * 64, 1500)
self.drop = nn.Dropout(0.5)
self.Lin2 = nn.Linear(1500, 150)
self.drop = nn.Dropout(0.3)
self.Lin3 = nn.Linear(150, classes_number)
def forward(self, x):
x = self.ConvLayer1(x)
x = self.ConvLayer2(x)
x = self.ConvLayer3(x)
x = self.ConvLayer4(x)
x = x.view(x.size(0), -1)
x = F.relu(self.Lin1(x))
x = self.drop(x)
x = F.relu(self.Lin2(x))
x = self.drop(x)
x = self.Lin3(x)
out = torch.sigmoid(x)
return out
def predict(x):
# On the exam, x will be a list of all the paths to the images of our held-out set
images = []
for img_path in x:
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Turn into greyscale
img = cv2.resize(img, (512, 512))
images.append(img)
images = np.array(images)
images = images.reshape(len(images), 1, images.shape[1], images.shape[1]) # converting(n,512,512)>(n,1,512,512)
images_tensors = torch.FloatTensor(np.array(images))
images_tensors = images_tensors.to(device)
classes = ["red blood cell", "difficult", "gametocyte", "trophozoite", "ring", "schizont", "leukocyte"]
model = Net(len(classes))
model = model.load_state_dict(torch.load('model.pt'))
y_test_pred = model(images_tensors)
y_test_pred[y_test_pred > 0.49] = 1
y_test_pred[y_test_pred < 0.5] = 0
return y_test_pred.cpu().detach()
Run Code Online (Sandbox Code Playgroud)
马车线是model = model.load_state_dict(torch.load('model.pt'))。根据docs, load_state_dict 返回一个 NamedTuplemissing_keys和unexpected_keys字段,而不是模型对象。在您的代码中,您将此命名元组分配给model变量,因此当您model在下一行调用时,您实际上是在尝试调用 NamedTuple,这会为您提供 TypeError。
相反,根据保存和加载模块 docs,您应该执行以下操作:
model = Net(len(classes))
model.load_state_dict(torch.load(PATH))
model.eval()
Run Code Online (Sandbox Code Playgroud)