如何在 Pytorch 中实现 dropout,以及在哪里应用它

Mar*_*tin 13 python machine-learning neural-network deep-learning pytorch

我很不确定这是否正确。我真的很难找到很多关于如何参数化神经网络的好例子。

你如何看待这两个班级的辍学方式。首先,我正在编写原始类:

class NeuralNet(nn.Module):
  def __init__(self, input_size, hidden_size, num_classes, p = dropout):
      super(NeuralNet, self).__init__()
      self.fc1 = nn.Linear(input_size, hidden_size)
      self.fc2 = nn.Linear(hidden_size, hidden_size)
      self.fc3 = nn.Linear(hidden_size, num_classes)

  def forward(self, x):
      out = F.relu(self.fc1(x))
      out = F.relu(self.fc2(out))
      out = self.fc3(out)
      return out
Run Code Online (Sandbox Code Playgroud)

然后在这里,我发现了两种不同的写东西的方式,我不知道如何区分。第一个使用:

self.drop_layer = nn.Dropout(p=p) 
Run Code Online (Sandbox Code Playgroud)

而第二个:

self.dropout = nn.Dropout(p) 
Run Code Online (Sandbox Code Playgroud)

这是我的结果:

class NeuralNet(nn.Module):
  def __init__(self, input_size, hidden_size, num_classes, p = dropout):
      super(NeuralNet, self).__init__()
      self.fc1 = nn.Linear(input_size, hidden_size)
      self.fc2 = nn.Linear(hidden_size, hidden_size)
      self.fc3 = nn.Linear(hidden_size, num_classes)
      self.drop_layer = nn.Dropout(p=p)

  def forward(self, x):
      out = F.relu(self.fc1(x))
      out = F.relu(self.fc2(out))
      out = self.fc3(out)
      return out


 class NeuralNet(nn.Module):
  def __init__(self, input_size, hidden_size, num_classes, p = dropout):
      super(NeuralNet, self).__init__()
      self.fc1 = nn.Linear(input_size, hidden_size)
      self.fc2 = nn.Linear(hidden_size, hidden_size)
      self.fc3 = nn.Linear(hidden_size, num_classes)
      self.dropout = nn.Dropout(p) 

  def forward(self, x):
      out = F.relu(self.fc1(x))
      out = F.relu(self.fc2(out))
      out = self.fc3(out)
      return out
Run Code Online (Sandbox Code Playgroud)

这是否可行,如果不是如何改进它,它是否给了我我期望的结果,这意味着创建一个神经网络,我可以在其中删除一些神经元。重要的细节,我只想dropout第二层神经网络,其余不涉及!

Nic*_*ais 14

您提供的两个示例完全相同。self.drop_layer = nn.Dropout(p=p)并且self.dropout = nn.Dropout(p)只是因为作者将层分配给不同的变量名称而有所不同。dropout 层通常在.__init__()方法中定义,并在 中调用.forward()。像这样:

 class NeuralNet(nn.Module):
  def __init__(self, input_size, hidden_size, num_classes, p = dropout):
      super(NeuralNet, self).__init__()
      self.fc1 = nn.Linear(input_size, hidden_size)
      self.fc2 = nn.Linear(hidden_size, hidden_size)
      self.fc3 = nn.Linear(hidden_size, num_classes)
      self.dropout = nn.Dropout(p) 

  def forward(self, x):
      out = F.relu(self.fc1(x))
      out = F.relu(self.fc2(out))
      out = self.dropout(self.fc3(out))
      return out
Run Code Online (Sandbox Code Playgroud)

您可以进行以下测试:

import torch
import torch.nn  as nn

m = nn.Dropout(p=0.5)
input = torch.randn(20, 16)
print(torch.sum(torch.nonzero(input)))
print(torch.sum(torch.nonzero(m(input))))
Run Code Online (Sandbox Code Playgroud)
tensor(5440) # sum of nonzero values
tensor(2656) # sum on nonzero values after dropout
Run Code Online (Sandbox Code Playgroud)

让我们想象一下:

import torch
import torch.nn as nn
input = torch.randn(5, 5)
print(input)
Run Code Online (Sandbox Code Playgroud)
tensor([[ 1.1404,  0.2102, -0.1237,  0.4240,  0.0174],
        [-2.0872,  1.2790,  0.7804, -0.0962, -0.9730],
        [ 0.4788, -1.3408,  0.0483,  2.4125, -1.2463],
        [ 1.5761,  0.3592,  0.2302,  1.3980,  0.0154],
        [-0.4308,  0.2484,  0.8584,  0.1689, -1.3607]])
Run Code Online (Sandbox Code Playgroud)

现在,让我们应用 dropout:

m = nn.Dropout(p=0.5)
output = m(input)
print(output)
Run Code Online (Sandbox Code Playgroud)
tensor([[ 0.0000,  0.0000, -0.0000,  0.8481,  0.0000],
        [-0.0000,  0.0000,  1.5608, -0.0000, -1.9459],
        [ 0.0000, -0.0000,  0.0000,  0.0000, -0.0000],
        [ 0.0000,  0.7184,  0.4604,  2.7959,  0.0308],
        [-0.0000,  0.0000,  0.0000,  0.0000, -0.0000]])
Run Code Online (Sandbox Code Playgroud)

大约一半的神经元已经变为零,因为我们有可能p=0.5将神经元设置为零!