Kim*_*men 7 scikit-learn cross-validation mnist pytorch k-fold
我是 pytorch 的新手,正在尝试实现一个前馈神经网络来对 mnist 数据集进行分类。我在尝试使用交叉验证时遇到了一些问题。我的数据具有以下形状
x_train
::
torch.Size([45000, 784])
和
y_train
:torch.Size([45000])
我尝试使用 sklearn 中的 KFold。
kfold =KFold(n_splits=10)
这是我的训练方法的第一部分,我将数据分成几部分:
for train_index, test_index in kfold.split(x_train, y_train):
x_train_fold = x_train[train_index]
x_test_fold = x_test[test_index]
y_train_fold = y_train[train_index]
y_test_fold = y_test[test_index]
print(x_train_fold.shape)
for epoch in range(epochs):
...
Run Code Online (Sandbox Code Playgroud)
y_train_fold
变量的索引是正确的,它只是:
[ 0 1 2 ... 4497 4498 4499]
,但它不是 for x_train_fold
,而是[ 4500 4501 4502 ... 44997 44998 44999]
。测试折叠也是如此。
对于第一次迭代,我希望变量x_train_fold
是前 4500 张图片,换句话说,具有 shape torch.Size([4500, 784])
,但它具有 shapetorch.Size([40500, 784])
关于如何做到这一点的任何提示?
我觉得你糊涂了!
暂时忽略第二个维度,当你有 45000 个点,并且使用 10 折交叉验证时,每折的大小是多少?45000/10 即 4500。
这意味着您的每个折叠将包含 4500 个数据点,其中一个折叠将用于测试,其余用于训练,即
对于测试: 1 折 => 4500 个数据点 => 大小:4500
对于训练:剩余折叠 => 45000-4500 个数据点 => 大小:45000-4500=40500
因此,对于第一次迭代,前 4500 个数据点(对应于索引)将用于测试,其余用于训练。(检查下图)
鉴于您的数据是x_train: torch.Size([45000, 784])
and y_train: torch.Size([45000])
,您的代码应该如下所示:
for train_index, test_index in kfold.split(x_train, y_train):
print(train_index, test_index)
x_train_fold = x_train[train_index]
y_train_fold = y_train[train_index]
x_test_fold = x_train[test_index]
y_test_fold = y_train[test_index]
print(x_train_fold.shape, y_train_fold.shape)
print(x_test_fold.shape, y_test_fold.shape)
break
[ 4500 4501 4502 ... 44997 44998 44999] [ 0 1 2 ... 4497 4498 4499]
torch.Size([40500, 784]) torch.Size([40500])
torch.Size([4500, 784]) torch.Size([4500])
Run Code Online (Sandbox Code Playgroud)
所以,当你说
我希望变量
x_train_fold
是第一个 4500 图片...形状 torch.Size([4500, 784])。
你错了。这个大小对应于x_test_fold
。在第一次迭代中,基于 10 折,x_train_fold
将有 40500 个点,因此它的大小应该是torch.Size([40500, 784])
.
想我现在已经有了,但我觉得代码有点乱,有 3 个嵌套循环。有没有更简单的方法,或者这种方法可以吗?
这是我的交叉验证训练代码:
def train(network, epochs, save_Model = False):
total_acc = 0
for fold, (train_index, test_index) in enumerate(kfold.split(x_train, y_train)):
### Dividing data into folds
x_train_fold = x_train[train_index]
x_test_fold = x_train[test_index]
y_train_fold = y_train[train_index]
y_test_fold = y_train[test_index]
train = torch.utils.data.TensorDataset(x_train_fold, y_train_fold)
test = torch.utils.data.TensorDataset(x_test_fold, y_test_fold)
train_loader = torch.utils.data.DataLoader(train, batch_size = batch_size, shuffle = False)
test_loader = torch.utils.data.DataLoader(test, batch_size = batch_size, shuffle = False)
for epoch in range(epochs):
print('\nEpoch {} / {} \nFold number {} / {}'.format(epoch + 1, epochs, fold + 1 , kfold.get_n_splits()))
correct = 0
network.train()
for batch_index, (x_batch, y_batch) in enumerate(train_loader):
optimizer.zero_grad()
out = network(x_batch)
loss = loss_f(out, y_batch)
loss.backward()
optimizer.step()
pred = torch.max(out.data, dim=1)[1]
correct += (pred == y_batch).sum()
if (batch_index + 1) % 32 == 0:
print('[{}/{} ({:.0f}%)]\tLoss: {:.6f}\t Accuracy:{:.3f}%'.format(
(batch_index + 1)*len(x_batch), len(train_loader.dataset),
100.*batch_index / len(train_loader), loss.data, float(correct*100) / float(batch_size*(batch_index+1))))
total_acc += float(correct*100) / float(batch_size*(batch_index+1))
total_acc = (total_acc / kfold.get_n_splits())
print('\n\nTotal accuracy cross validation: {:.3f}%'.format(total_acc))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
14820 次 |
最近记录: |