Ome*_*dar 22 python python-3.x tensorflow tensorflow2.0
对于我的项目,我需要将有向图转换为该图的 tensorflow 实现,就好像它是一个神经网络一样。在 tensorflow 版本 1 中,我可以将所有输入定义为占位符,然后使用图形的广度优先搜索为输出生成数据流图。然后我将使用 feed_dict 输入我的输入。然而,在 TensorFlow v2.0 中,他们决定完全取消占位符。
如何在不使用占位符的情况下为每个接受可变数量输入并返回可变数量输出的图形制作 tf.function?
我想生成一个这样的 tf.function ,它适用于任意非循环有向图,以便我可以利用 tensorflow GPU 支持在生成图形后连续运行数千次前馈。
编辑代码示例:
我的图被定义为字典。每个键代表一个节点,并具有另一个字典的对应值,指定具有权重的传入和传出链接。
{
"A": {
"incoming": [("B", 2), ("C", -1)],
"outgoing": [("D", 3)]
}
}
Run Code Online (Sandbox Code Playgroud)
为简洁起见,我省略了 B、C 和 D 的条目。这是我将如何在 tensorflow v1.0 中构建我想要的代码,其中输入只是一个严格输入图形的键值列表
def construct_graph(graph_dict, inputs, outputs):
queue = inputs[:]
make_dict = {}
for key, val in graph_dict.items():
if key in inputs:
make_dict[key] = tf.placeholder(tf.float32, name=key)
else:
make_dict[key] = None
# Breadth-First search of graph starting from inputs
while len(queue) != 0:
cur = graph_dict[queue[0]]
for outg in cur["outgoing"]:
if make_dict[outg[0]]: # If discovered node, do add/multiply operation
make_dict[outg[0]] = tf.add(make_dict[outg[0]], tf.multiply(outg[1], make_dict[queue[0]]))
else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
make_dict[outg[0]] = tf.multiply(make_dict[queue[0]], outg[1])
for outgo in graph_dict[outg[0]]["outgoing"]:
queue.append(outgo[0])
queue.pop(0)
# Returns one data graph for each output
return [make_dict[x] for x in outputs]
Run Code Online (Sandbox Code Playgroud)
然后我将能够多次运行输出,因为它们只是带有占位符的图形,我会为其提供 feed_dict。
显然,这不是 TensorFlow v2.0 的预期方式,因为它们似乎强烈反对在这个新版本中使用占位符。
关键是我只需要对图形进行一次预处理,因为它返回一个独立于 graph_dict 定义的数据图。
Ale*_*NON 41
以下是可用于 TF 2.0 的示例代码。它依赖于
可作为 访问的兼容性 APItensorflow.compat.v1
,并且需要禁用 v2 行为。我不知道它的行为是否符合您的预期。如果没有,请向我们提供有关您尝试实现的目标的更多解释。
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
@tf.function
def construct_graph(graph_dict, inputs, outputs):
queue = inputs[:]
make_dict = {}
for key, val in graph_dict.items():
if key in inputs:
make_dict[key] = tf.placeholder(tf.float32, name=key)
else:
make_dict[key] = None
# Breadth-First search of graph starting from inputs
while len(queue) != 0:
cur = graph_dict[queue[0]]
for outg in cur["outgoing"]:
if make_dict[outg[0]]: # If discovered node, do add/multiply operation
make_dict[outg[0]] = tf.add(make_dict[outg[0]], tf.multiply(outg[1], make_dict[queue[0]]))
else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
make_dict[outg[0]] = tf.multiply(make_dict[queue[0]], outg[1])
for outgo in graph_dict[outg[0]]["outgoing"]:
queue.append(outgo[0])
queue.pop(0)
# Returns one data graph for each output
return [make_dict[x] for x in outputs]
def main():
graph_def = {
"B": {
"incoming": [],
"outgoing": [("A", 1.0)]
},
"C": {
"incoming": [],
"outgoing": [("A", 1.0)]
},
"A": {
"incoming": [("B", 2.0), ("C", -1.0)],
"outgoing": [("D", 3.0)]
},
"D": {
"incoming": [("A", 2.0)],
"outgoing": []
}
}
outputs = construct_graph(graph_def, ["B", "C"], ["A"])
print(outputs)
if __name__ == "__main__":
main()
Run Code Online (Sandbox Code Playgroud)
[<tf.Tensor 'PartitionedCall:0' shape=<unknown> dtype=float32>]
Run Code Online (Sandbox Code Playgroud)
虽然上面的代码片段是有效的,但它仍然与 TF 1.0 相关联。要将其迁移到 TF 2.0,您必须稍微重构一下您的代码。
我建议您不要返回 TF 1.0 中可调用的张量列表,而是返回
keras.layers.Model
.
下面是一个工作示例:
import tensorflow as tf
def construct_graph(graph_dict, inputs, outputs):
queue = inputs[:]
make_dict = {}
for key, val in graph_dict.items():
if key in inputs:
# Use keras.Input instead of placeholders
make_dict[key] = tf.keras.Input(name=key, shape=(), dtype=tf.dtypes.float32)
else:
make_dict[key] = None
# Breadth-First search of graph starting from inputs
while len(queue) != 0:
cur = graph_dict[queue[0]]
for outg in cur["outgoing"]:
if make_dict[outg[0]] is not None: # If discovered node, do add/multiply operation
make_dict[outg[0]] = tf.keras.layers.add([
make_dict[outg[0]],
tf.keras.layers.multiply(
[[outg[1]], make_dict[queue[0]]],
)],
)
else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
make_dict[outg[0]] = tf.keras.layers.multiply(
[make_dict[queue[0]], [outg[1]]]
)
for outgo in graph_dict[outg[0]]["outgoing"]:
queue.append(outgo[0])
queue.pop(0)
# Returns one data graph for each output
model_inputs = [make_dict[key] for key in inputs]
model_outputs = [make_dict[key] for key in outputs]
return [tf.keras.Model(inputs=model_inputs, outputs=o) for o in model_outputs]
def main():
graph_def = {
"B": {
"incoming": [],
"outgoing": [("A", 1.0)]
},
"C": {
"incoming": [],
"outgoing": [("A", 1.0)]
},
"A": {
"incoming": [("B", 2.0), ("C", -1.0)],
"outgoing": [("D", 3.0)]
},
"D": {
"incoming": [("A", 2.0)],
"outgoing": []
}
}
outputs = construct_graph(graph_def, ["B", "C"], ["A"])
print("Builded models:", outputs)
for o in outputs:
o.summary(120)
print("Output:", o((1.0, 1.0)))
if __name__ == "__main__":
main()
Run Code Online (Sandbox Code Playgroud)
这里要注意什么?
placeholder
为keras.Input
,需要设置输入的形状。keras.layers.[add|multiply]
的计算。这可能不是必需的,但坚持一个界面。但是,它需要将因子包装在列表中(以处理批处理)keras.Model
返回这是代码的输出。
Builded models: [<tensorflow.python.keras.engine.training.Model object at 0x7fa0b49f0f50>]
Model: "model"
________________________________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
========================================================================================================================
B (InputLayer) [(None,)] 0
________________________________________________________________________________________________________________________
C (InputLayer) [(None,)] 0
________________________________________________________________________________________________________________________
tf_op_layer_mul (TensorFlowOpLayer) [(None,)] 0 B[0][0]
________________________________________________________________________________________________________________________
tf_op_layer_mul_1 (TensorFlowOpLayer) [(None,)] 0 C[0][0]
________________________________________________________________________________________________________________________
add (Add) (None,) 0 tf_op_layer_mul[0][0]
tf_op_layer_mul_1[0][0]
========================================================================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
________________________________________________________________________________________________________________________
Output: tf.Tensor([2.], shape=(1,), dtype=float32)
Run Code Online (Sandbox Code Playgroud)