Ale*_*ndr 5 sql oracle optimization
请比较以下内容:
INNER JOIN table1 t1 ON t1.someID LIKE 'search.%' AND
t1.someID = ( 'search.' || t0.ID )
Run Code Online (Sandbox Code Playgroud)
与
INNER JOIN table1 t1 ON t1.someID = ( 'search.' || t0.ID )
Run Code Online (Sandbox Code Playgroud)
我被告知,第一种情况已经过优化.但是你知道,我无法理解为什么会这样.据我所知,第二个例子应该运行得更快.
我们使用Oracle,但我认为目前无关紧要.
请解释我是不是错了.
谢谢
因此,以下是仅连接连接字符串的查询的解释计划:
SQL> explain plan for
2 select e.* from emp e
3 join big_table bt on bt.col2 = 'search'||trim(to_char(e.empno))
4 /
Explained.
SQL> select * from table(dbms_xplan.display)
2 /
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 179424166
-------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1052 | 65224 | 43 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | 1052 | 65224 | 43 (0)| 00:00:01 |
| 2 | TABLE ACCESS FULL| EMP | 20 | 780 | 3 (0)| 00:00:01 |
|* 3 | INDEX RANGE SCAN | BIG_VC_I | 53 | 1219 | 2 (0)| 00:00:01 |
-------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
3 - access("BT"."COL2"='search'||TRIM(TO_CHAR("E"."EMPNO")))
15 rows selected.
SQL>
Run Code Online (Sandbox Code Playgroud)
与在连接中包含 LIKE 子句的查询计划进行比较和对比:
SQL> explain plan for
2 select e.* from emp e
3 join big_table bt on (bt.col2 like 'search%'
4 and bt.col2 = 'search'||trim(to_char(e.empno)))
5 /
Explained.
SQL> select * from table(dbms_xplan.display)
2 /
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 179424166
-------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 62 | 5 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | 1 | 62 | 5 (0)| 00:00:01 |
|* 2 | TABLE ACCESS FULL| EMP | 1 | 39 | 3 (0)| 00:00:01 |
|* 3 | INDEX RANGE SCAN | BIG_VC_I | 1 | 23 | 2 (0)| 00:00:01 |
-------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter('search'||TRIM(TO_CHAR("E"."EMPNO")) LIKE 'search%')
3 - access("BT"."COL2"='search'||TRIM(TO_CHAR("E"."EMPNO")))
filter("BT"."COL2" LIKE 'search%')
17 rows selected.
SQL>
Run Code Online (Sandbox Code Playgroud)
第二次查询的成本比第一次低得多。但这是因为优化器估计第二个查询将返回比第一个查询少得多的行。更多信息可以让数据库做出更准确的预测。(事实上,查询不会返回任何行)。
当然,这确实假设连接的列已建立索引,否则不会有任何区别。
另一件要记住的事情是查询的列可能会影响计划。此版本从 BIG_TABLE 而不是 EMP 中进行选择。
SQL> explain plan for
2 select bt.* from emp e
3 join big_table bt on (bt.col2 like 'search%'
4 and bt.col2 = 'search'||trim(to_char(e.empno)))
5 /
Explained.
SQL> select * from table(dbms_xplan.display)
2 /
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------------------------------------------
Plan hash value: 4042413806
------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 46 | 4 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | | | | |
| 2 | NESTED LOOPS | | 1 | 46 | 4 (0)| 00:00:01 |
|* 3 | INDEX FULL SCAN | PK_EMP | 1 | 4 | 1 (0)| 00:00:01 |
|* 4 | INDEX RANGE SCAN | BIG_VC_I | 1 | | 2 (0)| 00:00:01 |
| 5 | TABLE ACCESS BY INDEX ROWID| BIG_TABLE | 1 | 42 | 3 (0)| 00:00:01 |
------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
3 - filter('search'||TRIM(TO_CHAR("E"."EMPNO")) LIKE 'search%')
4 - access("BT"."COL2"='search'||TRIM(TO_CHAR("E"."EMPNO")))
filter("BT"."COL2" LIKE 'search%')
19 rows selected.
SQL>
Run Code Online (Sandbox Code Playgroud)