VAS*_*SIH 5 python artificial-intelligence machine-learning neural-network data-science
经过Python训练后,我的神经网络无法提供预期的输出。代码中是否有错误?有什么方法可以减少均方误差(MSE)?
我试图反复训练(运行程序)网络,但它没有学习,而是提供了相同的MSE和输出。
这是我使用的数据:
https://drive.google.com/open?id=1GLm87-5E_6YhUIPZ_CtQLV9F9wcGaTj2
这是我的代码:
#load and evaluate a saved model
from numpy import loadtxt
from tensorflow.keras.models import load_model
# load model
model = load_model('ANNnew.h5')
# summarize model.
model.summary()
#Model starts
import numpy as np
import pandas as pd
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Importing the dataset
X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Initialising the ANN
model = Sequential()
# Adding the input layer and the first hidden layer
model.add(Dense(32, activation = 'tanh', input_dim = 4))
# Adding the second hidden layer
model.add(Dense(units = 18, activation = 'tanh'))
# Adding the third hidden layer
model.add(Dense(units = 32, activation = 'tanh'))
#model.add(Dense(1))
model.add(Dense(units = 1))
# Compiling the ANN
model.compile(optimizer = 'adam', loss = 'mean_squared_error')
# Fitting the ANN to the Training set
model.fit(X_train, y_train, batch_size = 100, epochs = 1000)
y_pred = model.predict(X_test)
for i in range(5):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))
plt.plot(y_test, color = 'red', label = 'Test data')
plt.plot(y_pred, color = 'blue', label = 'Predicted data')
plt.title('Prediction')
plt.legend()
plt.show()
# save model and architecture to single file
model.save("ANNnew.h5")
print("Saved model to disk")
Run Code Online (Sandbox Code Playgroud)


我注意到您的印刷报告存在一个小错误-而不是:
for i in range(5):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))
Run Code Online (Sandbox Code Playgroud)
你应该有:
for i in range(len(y_test)):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y_test[i].tolist()))
Run Code Online (Sandbox Code Playgroud)
在此打印文件中,您最终将比较测试预测和测试的正确(以前您将数组y中前5个观测值的测试预测和真实值进行了比较),以及测试中的所有6个观测值,而不仅仅是5 :-)
您还应该监视的是火车数据的模型质量。为了使这种情况清楚起见,过于简化了:
通常,为了实现找到可以推广的最佳NN的最终目标,优良作法是在model.fit调用中使用validation_split或validation_data。
进口货
# imports
import numpy as np
import pandas as pd
import os
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from tensorflow import set_random_seed
from tensorflow.keras.initializers import glorot_uniform
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from importlib import reload
Run Code Online (Sandbox Code Playgroud)
有用的功能
# useful pandas display settings
pd.options.display.float_format = '{:.3f}'.format
# useful functions
def plot_history(history, metrics_to_plot):
"""
Function plots history of selected metrics for fitted neural net.
"""
# plot
for metric in metrics_to_plot:
plt.plot(history.history[metric])
# name X axis informatively
plt.xlabel('epoch')
# name Y axis informatively
plt.ylabel('metric')
# add informative legend
plt.legend(metrics_to_plot)
# plot
plt.show()
def plot_fit(y_true, y_pred, title='title'):
"""
Function plots true values and predicted values, sorted in increase order by true values.
"""
# create one dataframe with true values and predicted values
results = y_true.reset_index(drop=True).merge(pd.DataFrame(y_pred), left_index=True, right_index=True)
# rename columns informartively
results.columns = ['true', 'prediction']
# sort for clarity of visualization
results = results.sort_values(by=['true']).reset_index(drop=True)
# plot true values vs predicted values
results.plot()
# adding scatter on line plots
plt.scatter(results.index, results.true, s=5)
plt.scatter(results.index, results.prediction, s=5)
# name X axis informatively
plt.xlabel('obs sorted in ascending order with respect to true values')
# add customizable title
plt.title(title)
# plot
plt.show();
def reset_all_randomness():
"""
Function assures reproducibility of NN estimation results.
"""
# reloads
reload(tf)
reload(np)
reload(random)
# seeds - for reproducibility
os.environ['PYTHONHASHSEED']=str(984797)
random.seed(984797)
set_random_seed(984797)
np.random.seed(984797)
my_init = glorot_uniform(seed=984797)
return my_init
Run Code Online (Sandbox Code Playgroud)
从文件加载X和y
X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values
Run Code Online (Sandbox Code Playgroud)
将X和y分为训练集和测试集
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)
Run Code Online (Sandbox Code Playgroud)
功能缩放
# Feature Scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
Run Code Online (Sandbox Code Playgroud)
Model0-尝试对火车数据进行过度拟合并验证过度拟合
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model0
# Initialising the ANN
model0 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model0.add(Dense(units = 128, activation = 'tanh', input_dim = 4, kernel_initializer=my_init))
# Adding 2 hidden layer
model0.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))
# Adding 3 hidden layer
model0.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))
# Adding 4 hidden layer
model0.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))
# Adding output layer
model0.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)
# Compiling the ANN
model0.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model0.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)
# Generate prediction for both Train and Valid set
y_train_pred_model0 = model0.predict(X_train)
y_test_pred_model0 = model0.predict(X_test)
# check what metrics are in fact available in history
history.history.keys()
dict_keys(['val_loss', 'val_mean_squared_error', 'val_mean_absolute_error', 'loss', 'mean_squared_error', 'mean_absolute_error'])
# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])
# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model0[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model0, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model0, 'Fit on test data')
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
Run Code Online (Sandbox Code Playgroud)
[1000.0, 25.0, 2235.3, 1.0] => [2.2463024] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.6396966] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [5.6486473] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [4.852657] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.9801836] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [5.761505] (expected [6])
Run Code Online (Sandbox Code Playgroud)
MSE on train data is: 0.1629941761493683
MSE on test data is: 1.9077353477478027
Run Code Online (Sandbox Code Playgroud)
有了这个结果,让我们假设过度拟合成功了。
寻找有价值的功能(您拥有的数据的转换)
# augment features by calculating absolute values and squares of original features
X_train = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_train])
X_test = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_test])
Run Code Online (Sandbox Code Playgroud)
Model1-具有8个附加功能,总共12个输入(而不是4个)
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model1
# Initialising the ANN
model1 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model1.add(Dense(units = 128, activation = 'tanh', input_dim = 12, kernel_initializer=my_init))
# Adding 2 hidden layer
model1.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))
# Adding 3 hidden layer
model1.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))
# Adding 4 hidden layer
model1.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))
# Adding output layer
model1.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)
# Compiling the ANN
model1.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model1.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)
# Generate prediction for both Train and Valid set
y_train_pred_model1 = model1.predict(X_train)
y_test_pred_model1 = model1.predict(X_test)
# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])
# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model1[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model1, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model1, 'Fit on test data')
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
Run Code Online (Sandbox Code Playgroud)
[1000.0, 25.0, 2235.3, 1.0] => [2.5696845] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.0152197] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [4.4963903] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [5.004753] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.982211] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [6.158882] (expected [6])
Run Code Online (Sandbox Code Playgroud)
MSE on train data is: 0.17548464238643646
MSE on test data is: 1.4240833520889282
Run Code Online (Sandbox Code Playgroud)
Model2-具有2个隐藏层的NN的网格搜索实验,地址为:
使用NN架构(layer1_neurons,layer2_neurons,activation_function)
进行NN估计过程(learning_rate,beta1,beta2)
# init experiment_results
experiment_results = []
# the experiment
for layer1_neurons in [4, 8, 16,32 ]:
for layer2_neurons in [4, 8, 16, 32]:
for activation_function in ['tanh', 'relu']:
for learning_rate in [0.01, 0.001]:
for beta1 in [0.9]:
for beta2 in [0.99]:
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model2
# Initialising the ANN
model2 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model2.add(Dense(units = layer1_neurons, activation = activation_function, input_dim = 12, kernel_initializer=my_init))
# Adding 2 hidden layer
model2.add(Dense(units = layer2_neurons, activation = activation_function, kernel_initializer=my_init))
# Adding output layer
model2.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1, beta2=beta2)
# Compiling the ANN
model2.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model2.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000, verbose=0)
# Generate prediction for both Train and Valid set
y_train_pred_model2 = model2.predict(X_train)
y_test_pred_model2 = model2.predict(X_test)
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
# create data you want to save for each processed NN
partial_results = \
{
'layer1_neurons': layer1_neurons,
'layer2_neurons': layer2_neurons,
'activation_function': activation_function,
'learning_rate': learning_rate,
'beta1': beta1,
'beta2': beta2,
'final_train_mean_squared_error': history.history['mean_squared_error'][-1],
'final_val_mean_squared_error': history.history['val_mean_squared_error'][-1],
'best_train_epoch': history.history['mean_squared_error'].index(min(history.history['mean_squared_error'])),
'best_train_mean_squared_error': np.min(history.history['mean_squared_error']),
'best_val_epoch': history.history['val_mean_squared_error'].index(min(history.history['val_mean_squared_error'])),
'best_val_mean_squared_error': np.min(history.history['val_mean_squared_error']),
}
experiment_results.append(
partial_results
)
Run Code Online (Sandbox Code Playgroud)
探索实验结果:
# put experiment_results into DataFrame
experiment_results_df = pd.DataFrame(experiment_results)
# identifying models hopefully not too much overfitted to valid data at the end of estimation (after 1000 epochs) :
experiment_results_df['valid'] = experiment_results_df['final_val_mean_squared_error'] > experiment_results_df['final_train_mean_squared_error']
# display the best combinations of parameters for valid data, which seems not overfitted
experiment_results_df[experiment_results_df['valid']].sort_values(by=['final_val_mean_squared_error']).head()
layer1_neurons layer2_neurons activation_function learning_rate beta1 beta2 final_train_mean_squared_error final_val_mean_squared_error best_train_epoch best_train_mean_squared_error best_val_epoch best_val_mean_squared_error valid
26 8 16 relu 0.010 0.900 0.990 0.992 1.232 998 0.992 883 1.117 True
36 16 8 tanh 0.010 0.900 0.990 0.178 1.345 998 0.176 40 1.245 True
14 4 32 relu 0.010 0.900 0.990 1.320 1.378 980 1.300 98 0.937 True
2 4 4 relu 0.010 0.900 0.990 1.132 1.419 996 1.131 695 1.002 True
57 32 16 tanh 0.001 0.900 0.990 1.282 1.432 999 1.282 999 1.432 True
Run Code Online (Sandbox Code Playgroud)
如果考虑到整个培训历史,则可以做得更好:
# for each NN estimation identify dictionary of epochs for which NN was not overfitted towards valid data
# for each such epoch I store its number and corresponding mean_squared_error on valid data
experiment_results_df['not_overfitted_epochs_on_valid'] = \
experiment_results_df.apply(
lambda row:
{
i: row['val_mean_squared_error_history'][i]
for i in range(len(row['train_mean_squared_error_history']))
if row['val_mean_squared_error_history'][i] > row['train_mean_squared_error_history'][i]
},
axis=1
)
# basing on previosuly prepared dict, for each NN estimation I can identify:
# best not overfitted mse value on valid data and corresponding best not overfitted epoch on valid data
experiment_results_df['best_not_overfitted_mse_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
lambda x: np.min(list(x.values())) if len(list(x.values()))>0 else np.NaN
)
experiment_results_df['best_not_overfitted_epoch_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
lambda x: list(x.keys())[list(x.values()).index(np.min(list(x.values())))] if len(list(x.values()))>0 else np.NaN
)
# now I can sort all estimations according to best not overfitted mse on valid data overall, not only at the end of estimation
experiment_results_df.sort_values(by=['best_not_overfitted_mse_on_valid'])[[
'layer1_neurons','layer2_neurons','activation_function','learning_rate','beta1','beta2',
'best_not_overfitted_mse_on_valid','best_not_overfitted_epoch_on_valid'
]].head()
layer1_neurons layer2_neurons activation_function learning_rate beta1 beta2 best_not_overfitted_mse_on_valid best_not_overfitted_epoch_on_valid
26 8 16 relu 0.010 0.900 0.990 1.117 883.000
54 32 8 relu 0.010 0.900 0.990 1.141 717.000
50 32 4 relu 0.010 0.900 0.990 1.210 411.000
36 16 8 tanh 0.010 0.900 0.990 1.246 821.000
56 32 16 tanh 0.010 0.900 0.990 1.264 693.000
Run Code Online (Sandbox Code Playgroud)
现在,我记录用于最终模型估计的最佳估计组合:
Model3-最终模型
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model3
# Initialising the ANN
model3 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model3.add(Dense(units = 8, activation = 'relu', input_dim = 12, kernel_initializer=my_init))
# Adding 2 hidden layer
model3.add(Dense(units = 16, activation = 'relu', kernel_initializer=my_init))
# Adding output layer
model3.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.010, beta1=0.900, beta2=0.990)
# Compiling the ANN
model3.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])