使用Python训练后,神经网络未提供预期的输出

VAS*_*SIH 5 python artificial-intelligence machine-learning neural-network data-science

经过Python训练后,我的神经网络无法提供预期的输出。代码中是否有错误?有什么方法可以减少均方误差(MSE)?

我试图反复训练(运行程序)网络,但它没有学习,而是提供了相同的MSE和输出。

这是我使用的数据:

https://drive.google.com/open?id=1GLm87-5E_6YhUIPZ_CtQLV9F9wcGaTj2

这是我的代码:

#load and evaluate a saved model
from numpy import loadtxt
from tensorflow.keras.models import load_model

# load model
model = load_model('ANNnew.h5')
# summarize model.
model.summary()
#Model starts
import numpy as np
import pandas as pd 
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Importing the dataset
X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values

# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Initialising the ANN
model = Sequential()

# Adding the input layer and the first hidden layer
model.add(Dense(32, activation = 'tanh', input_dim = 4))

# Adding the second hidden layer
model.add(Dense(units = 18, activation = 'tanh'))

# Adding the third hidden layer
model.add(Dense(units = 32, activation = 'tanh'))

#model.add(Dense(1))
model.add(Dense(units = 1))

# Compiling the ANN
model.compile(optimizer = 'adam', loss = 'mean_squared_error')

# Fitting the ANN to the Training set
model.fit(X_train, y_train, batch_size = 100, epochs = 1000)

y_pred = model.predict(X_test)
for i in range(5):
    print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))


plt.plot(y_test, color = 'red', label = 'Test data')
plt.plot(y_pred, color = 'blue', label = 'Predicted data')
plt.title('Prediction')
plt.legend()
plt.show()

# save model and architecture to single file
model.save("ANNnew.h5")
print("Saved model to disk")
Run Code Online (Sandbox Code Playgroud)

输出量

输出量

Jua*_*les 7

我注意到您的印刷报告存在一个小错误-而不是:

for i in range(5):
    print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))
Run Code Online (Sandbox Code Playgroud)

你应该有:

for i in range(len(y_test)):
    print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y_test[i].tolist()))
Run Code Online (Sandbox Code Playgroud)

在此打印文件中,您最终将比较测试预测和测试的正确(以前您将数组y中前5个观测值的测试预测和真实值进行了比较),以及测试中的所有6个观测值,而不仅仅是5 :-)

您还应该监视的是火车数据的模型质量。为了使这种情况清楚起见,过于简化了:

  1. 您应该尝试使用神经网络(NN)过度拟合火车数据;如果您甚至无法使用NN过度拟合训练数据,则可能是因为NN在当前状态下使您的问题的解决方案令人失望;在这种情况下,您将需要寻找其他功能(也将在下文中提及),更改模型质量指标或仅接受归因于正在准备的解决方案的预测质量的限制;
  2. 确保有可能过度拟合火车数据或接受预测质量的限制,您的目标是找到可以推广的最佳模型;监视模型的训练和测试质量至关重要;泛化模型是对火车数据和有效数据执行相似的模型;为了找到最佳的通用模型,您可以:
    • 寻找有价值的功能(您拥有的数据或其他数据源的转换)
    • 玩NN架构
    • 参与神经网络估计过程

通常,为了实现找到可以推广的最佳NN的最终目标,优良作法是在model.fit调用中使用validation_split或validation_data。

进口货

# imports
import numpy as np
import pandas as pd
import os
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from tensorflow import set_random_seed
from tensorflow.keras.initializers import glorot_uniform
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from importlib import reload
Run Code Online (Sandbox Code Playgroud)

有用的功能

# useful pandas display settings
pd.options.display.float_format = '{:.3f}'.format

# useful functions
def plot_history(history, metrics_to_plot):
    """
    Function plots history of selected metrics for fitted neural net.

    """

    # plot
    for metric in metrics_to_plot:
        plt.plot(history.history[metric])

    # name X axis informatively
    plt.xlabel('epoch')

    # name Y axis informatively
    plt.ylabel('metric')

    # add informative legend
    plt.legend(metrics_to_plot)

    # plot
    plt.show()

def plot_fit(y_true, y_pred, title='title'):
    """
    Function plots true values and predicted values, sorted in increase order by true values.

    """

    # create one dataframe with true values and predicted values
    results = y_true.reset_index(drop=True).merge(pd.DataFrame(y_pred), left_index=True, right_index=True)

    # rename columns informartively
    results.columns = ['true', 'prediction']

    # sort for clarity of visualization
    results = results.sort_values(by=['true']).reset_index(drop=True)

    # plot true values vs predicted values
    results.plot()

    # adding scatter on line plots
    plt.scatter(results.index, results.true, s=5)
    plt.scatter(results.index, results.prediction, s=5)

    # name X axis informatively
    plt.xlabel('obs sorted in ascending order with respect to true values')

    # add customizable title
    plt.title(title)

    # plot
    plt.show();

def reset_all_randomness():
    """
    Function assures reproducibility of NN estimation results.

    """

    # reloads
    reload(tf)
    reload(np)
    reload(random)

    # seeds - for reproducibility
    os.environ['PYTHONHASHSEED']=str(984797)
    random.seed(984797)
    set_random_seed(984797)
    np.random.seed(984797)
    my_init = glorot_uniform(seed=984797)

    return my_init
Run Code Online (Sandbox Code Playgroud)

从文件加载X和y

X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values
Run Code Online (Sandbox Code Playgroud)

将X和y分为训练集和测试集

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)
Run Code Online (Sandbox Code Playgroud)

功能缩放

# Feature Scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
Run Code Online (Sandbox Code Playgroud)

Model0-尝试对火车数据进行过度拟合并验证过度拟合

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model0

# Initialising the ANN
model0 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model0.add(Dense(units = 128, activation = 'tanh', input_dim = 4, kernel_initializer=my_init))

# Adding 2 hidden layer
model0.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))

# Adding 3 hidden layer
model0.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))

# Adding 4 hidden layer
model0.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))

# Adding output layer
model0.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)

# Compiling the ANN
model0.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model0.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)

# Generate prediction for both Train and Valid set
y_train_pred_model0 = model0.predict(X_train)
y_test_pred_model0 = model0.predict(X_test)

# check what metrics are in fact available in history
history.history.keys()

dict_keys(['val_loss', 'val_mean_squared_error', 'val_mean_absolute_error', 'loss', 'mean_squared_error', 'mean_absolute_error'])

# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])

# look at model fit quality
for i in range(len(y_test)):
    print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model0[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model0, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model0, 'Fit on test data')

print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明 在此处输入图片说明

[1000.0, 25.0, 2235.3, 1.0] => [2.2463024] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.6396966] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [5.6486473] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [4.852657] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.9801836] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [5.761505] (expected [6])
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明 在此处输入图片说明

MSE on train data is: 0.1629941761493683
MSE on test data is: 1.9077353477478027
Run Code Online (Sandbox Code Playgroud)

有了这个结果,让我们假设过度拟合成功了。

寻找有价值的功能(您拥有的数据的转换)

# augment features by calculating absolute values and squares of original features
X_train = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_train])
X_test = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_test])
Run Code Online (Sandbox Code Playgroud)

Model1-具有8个附加功能,总共12个输入(而不是4个)

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model1

# Initialising the ANN
model1 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model1.add(Dense(units = 128, activation = 'tanh', input_dim = 12, kernel_initializer=my_init))

# Adding 2 hidden layer
model1.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))

# Adding 3 hidden layer
model1.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))

# Adding 4 hidden layer
model1.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))

# Adding output layer
model1.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)

# Compiling the ANN
model1.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model1.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)

# Generate prediction for both Train and Valid set
y_train_pred_model1 = model1.predict(X_train)
y_test_pred_model1 = model1.predict(X_test)

# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])

# look at model fit quality
for i in range(len(y_test)):
    print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model1[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model1, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model1, 'Fit on test data')

print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明 在此处输入图片说明

[1000.0, 25.0, 2235.3, 1.0] => [2.5696845] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.0152197] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [4.4963903] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [5.004753] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.982211] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [6.158882] (expected [6])
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明 在此处输入图片说明

MSE on train data is: 0.17548464238643646
MSE on test data is: 1.4240833520889282
Run Code Online (Sandbox Code Playgroud)

Model2-具有2个隐藏层的NN的网格搜索实验,地址为:

使用NN架构(layer1_neuronslayer2_neuronsactivation_function

进行NN估计过程(learning_ratebeta1beta2

# init experiment_results
experiment_results = []

# the experiment
for layer1_neurons in [4, 8, 16,32 ]:
    for layer2_neurons in [4, 8, 16, 32]:
        for activation_function in ['tanh', 'relu']:
            for learning_rate in [0.01, 0.001]:
                for beta1 in [0.9]:
                    for beta2 in [0.99]:

                        # reset_all_randomness - for reproducibility
                        my_init = reset_all_randomness()

                        # model2
                        # Initialising the ANN
                        model2 = Sequential()

                        # Adding 1 hidden layer: the input layer and the first hidden layer
                        model2.add(Dense(units = layer1_neurons, activation = activation_function, input_dim = 12, kernel_initializer=my_init))

                        # Adding 2 hidden layer
                        model2.add(Dense(units = layer2_neurons, activation = activation_function, kernel_initializer=my_init))

                        # Adding output layer
                        model2.add(Dense(units = 1, kernel_initializer=my_init))

                        # Set up Optimizer
                        Optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1, beta2=beta2)

                        # Compiling the ANN
                        model2.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])

                        # Fitting the ANN to the Train set, at the same time observing quality on Valid set
                        history = model2.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000, verbose=0)

                        # Generate prediction for both Train and Valid set
                        y_train_pred_model2 = model2.predict(X_train)
                        y_test_pred_model2 = model2.predict(X_test)

                        print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
                        print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))

                        # create data you want to save for each processed NN
                        partial_results = \
                        {
                            'layer1_neurons': layer1_neurons,
                            'layer2_neurons': layer2_neurons,
                            'activation_function': activation_function,

                            'learning_rate': learning_rate,
                            'beta1': beta1,
                            'beta2': beta2,

                            'final_train_mean_squared_error': history.history['mean_squared_error'][-1],
                            'final_val_mean_squared_error': history.history['val_mean_squared_error'][-1],

                            'best_train_epoch': history.history['mean_squared_error'].index(min(history.history['mean_squared_error'])),
                            'best_train_mean_squared_error': np.min(history.history['mean_squared_error']),

                            'best_val_epoch': history.history['val_mean_squared_error'].index(min(history.history['val_mean_squared_error'])),
                            'best_val_mean_squared_error': np.min(history.history['val_mean_squared_error']),

                        }

                        experiment_results.append(
                            partial_results
                        )
Run Code Online (Sandbox Code Playgroud)

探索实验结果:

# put experiment_results into DataFrame
experiment_results_df = pd.DataFrame(experiment_results)

# identifying models hopefully not too much overfitted to valid data at the end of estimation (after 1000 epochs) : 
experiment_results_df['valid'] = experiment_results_df['final_val_mean_squared_error'] > experiment_results_df['final_train_mean_squared_error']

# display the best combinations of parameters for valid data, which seems not overfitted
experiment_results_df[experiment_results_df['valid']].sort_values(by=['final_val_mean_squared_error']).head()

    layer1_neurons  layer2_neurons activation_function  learning_rate  beta1    beta2  final_train_mean_squared_error  final_val_mean_squared_error  best_train_epoch  best_train_mean_squared_error  best_val_epoch  best_val_mean_squared_error  valid
26               8              16                relu          0.010  0.900    0.990                           0.992                         1.232               998                          0.992             883                        1.117   True
36              16               8                tanh          0.010  0.900    0.990                           0.178                         1.345               998                          0.176              40                        1.245   True
14               4              32                relu          0.010  0.900    0.990                           1.320                         1.378               980                          1.300              98                        0.937   True
2                4               4                relu          0.010  0.900    0.990                           1.132                         1.419               996                          1.131             695                        1.002   True
57              32              16                tanh          0.001  0.900    0.990                           1.282                         1.432               999                          1.282             999                        1.432   True
Run Code Online (Sandbox Code Playgroud)

如果考虑到整个培训历史,则可以做得更好:

# for each NN estimation identify dictionary of epochs for which NN was not overfitted towards valid data 
# for each such epoch I store its number and corresponding mean_squared_error on valid data
experiment_results_df['not_overfitted_epochs_on_valid'] = \
experiment_results_df.apply(
    lambda row:
    {
        i: row['val_mean_squared_error_history'][i]
        for i in range(len(row['train_mean_squared_error_history']))
        if row['val_mean_squared_error_history'][i] > row['train_mean_squared_error_history'][i]
    },
    axis=1
)

# basing on previosuly prepared dict, for each NN estimation I can identify:
# best not overfitted mse value on valid data and corresponding best not overfitted epoch on valid data
experiment_results_df['best_not_overfitted_mse_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
    lambda x: np.min(list(x.values())) if len(list(x.values()))>0 else np.NaN
)

experiment_results_df['best_not_overfitted_epoch_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
    lambda x: list(x.keys())[list(x.values()).index(np.min(list(x.values())))] if len(list(x.values()))>0 else np.NaN
)

# now I can sort all estimations according to best not overfitted mse on valid data overall, not only at the end of estimation
experiment_results_df.sort_values(by=['best_not_overfitted_mse_on_valid'])[[
    'layer1_neurons','layer2_neurons','activation_function','learning_rate','beta1','beta2',
    'best_not_overfitted_mse_on_valid','best_not_overfitted_epoch_on_valid'
]].head()

    layer1_neurons  layer2_neurons activation_function  learning_rate  beta1    beta2  best_not_overfitted_mse_on_valid  best_not_overfitted_epoch_on_valid
26               8              16                relu          0.010  0.900    0.990                             1.117                             883.000
54              32               8                relu          0.010  0.900    0.990                             1.141                             717.000
50              32               4                relu          0.010  0.900    0.990                             1.210                             411.000
36              16               8                tanh          0.010  0.900    0.990                             1.246                             821.000
56              32              16                tanh          0.010  0.900    0.990                             1.264                             693.000
Run Code Online (Sandbox Code Playgroud)

现在,我记录用于最终模型估计的最佳估计组合:

  • layer1_neurons = 8
  • layer2_neurons = 16
  • activation_function ='relu'
  • learning_rate = 0.010
  • beta1 = 0.900
  • beta2 = 0.990
  • 停止训练的时期= 883

Model3-最终模型

# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()

# model3

# Initialising the ANN
model3 = Sequential()

# Adding 1 hidden layer: the input layer and the first hidden layer
model3.add(Dense(units = 8, activation = 'relu', input_dim = 12, kernel_initializer=my_init))

# Adding 2 hidden layer
model3.add(Dense(units = 16, activation = 'relu', kernel_initializer=my_init))

# Adding output layer
model3.add(Dense(units = 1, kernel_initializer=my_init))

# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.010, beta1=0.900, beta2=0.990)

# Compiling the ANN
model3.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])