Pie*_*rce 5 python sorting hierarchical pandas
我有一个类别和数量的数据框。可以使用冒号分隔的字符串将类别嵌套到无限级别的子类别中。我希望按降序对它进行排序。但是以分层类型的方式显示。
我需要如何排序
CATEGORY AMOUNT
Transport 5000
Transport : Car 4900
Transport : Train 100
Household 1100
Household : Utilities 600
Household : Utilities : Water 400
Household : Utilities : Electric 200
Household : Cleaning 100
Household : Cleaning : Bathroom 75
Household : Cleaning : Kitchen 25
Household : Rent 400
Living 250
Living : Other 150
Living : Food 100
Run Code Online (Sandbox Code Playgroud)
编辑: 数据框:
pd.DataFrame({
"category": ["Transport", "Transport : Car", "Transport : Train", "Household", "Household : Utilities", "Household : Utilities : Water", "Household : Utilities : Electric", "Household : Cleaning", "Household : Cleaning : Bathroom", "Household : Cleaning : Kitchen", "Household : Rent", "Living", "Living : Other", "Living : Food"],
"amount": [5000, 4900, 100, 1100, 600, 400, 200, 100, 75, 25, 400, 250, 150, 100]
})
Run Code Online (Sandbox Code Playgroud)
注意:这是我想要的顺序。在排序之前,它可以是任意顺序。
EDIT2: 如果有人在寻找类似的解决方案,我在这里发布了一个解决方案:如何按层次类别结构中的值对熊猫中的数据框进行排序
一种方法可能是首先选择str.split类别列。
df_ = df['category'].str.split(' : ', expand=True)
print (df_.head())
0 1 2
0 Transport None None
1 Transport Car None
2 Transport Train None
3 Household None None
4 Household Utilities None
Run Code Online (Sandbox Code Playgroud)
然后获取列金额,您想要的是根据以下条件获取每组的最大金额:
您可以使用 with 来执行此操作groupby.transform,max然后连接创建的每个列。
s = df['amount']
l_cols = list(df_.columns)
dfa = pd.concat([s.groupby([df_[col] for col in range(0, lv+1)]).transform('max')
for lv in l_cols], keys=l_cols, axis=1)
print (dfa)
0 1 2
0 5000 NaN NaN
1 5000 4900.0 NaN
2 5000 100.0 NaN
3 1100 NaN NaN
4 1100 600.0 NaN
5 1100 600.0 400.0
6 1100 600.0 200.0
7 1100 100.0 NaN
8 1100 100.0 75.0
9 1100 100.0 25.0
10 1100 400.0 NaN
11 250 NaN NaN
12 250 150.0 NaN
13 250 100.0 NaN
Run Code Online (Sandbox Code Playgroud)
现在您只需按sort_values正确的顺序对所有列进行排序,先是 0,然后是 1,然后是 2...,获取索引并使用 loc 以预期的方式对 df 进行排序
dfa = dfa.sort_values(l_cols, na_position='first', ascending=False)
dfs = df.loc[dfa.index] #here you can reassign to df directly
print (dfs)
category amount
0 Transport 5000
1 Transport : Car 4900
2 Transport : Train 100
3 Household 1100
4 Household : Utilities 600
5 Household : Utilities : Water 400
6 Household : Utilities : Electric 200
10 Household : Rent 400 #here is the one difference with this data
7 Household : Cleaning 100
8 Household : Cleaning : Bathroom 75
9 Household : Cleaning : Kitchen 25
11 Living 250
12 Living : Other 150
13 Living : Food 100
Run Code Online (Sandbox Code Playgroud)
回答我自己的问题:我找到了一种方法。有点啰嗦,但就是这样。
import numpy as np
import pandas as pd
def sort_tree_df(df, tree_column, sort_column):
sort_key = sort_column + '_abs'
df[sort_key] = df[sort_column].abs()
df.index = pd.MultiIndex.from_frame(
df[tree_column].str.split(":").apply(lambda x: [y.strip() for y in x]).apply(pd.Series))
sort_columns = [df[tree_column].values, df[sort_key].values] + [
df.groupby(level=list(range(0, x)))[sort_key].transform('max').values
for x in range(df.index.nlevels - 1, 0, -1)
]
sort_indexes = np.lexsort(sort_columns)
df_sorted = df.iloc[sort_indexes[::-1]]
df_sorted.reset_index(drop=True, inplace=True)
df_sorted.drop(sort_key, axis=1, inplace=True)
return df_sorted
sort_tree_df(df, 'category', 'amount')
Run Code Online (Sandbox Code Playgroud)